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ABSTRACT 

Performance of a Full-Scale Rammed Aggregate Pier Group in Silty Sand 
Based on Blast-Induced Liquefaction Testing 

in Emilia-Romagna, Italy 
 

Paul Joseph Walsh Andersen 
Department of Civil and Environmental Engineering, BYU 

Master of Science 
 

To investigate the liquefaction mitigation capability of Rammed Aggregate Piers® (RAP) in silty 
sand, blast liquefaction testing was performed at a soil profile treated with a full-scale RAP group 
relative to an untreated soil profile. The RAP group consisted of 16 piers in a 4x4 arrangement at 
2 m center-to-center spacing extending to a depth of 9.5 m. Blasting around the untreated area 
induced liquefaction (ru ≈1.0) from 3 m to 11 m depth, producing several large sand boils, and 
causing settlement of 10 cm. In contrast, installation of the RAP group reduced excess pore water 
pressure (ru ≈0.75), eliminated sand ejecta, and reduced average settlement to between 2 to 5 cm 
when subjected to the same blast charges. Although the liquefaction-induced settlement in the 
untreated area could be accurately estimated using the CPT-based settlement approach proposed 
by Zhang et al. (2002), settlement in the RAP treated area was significantly overestimated with 
the same approach even after considering RAP treatment-induced densification. Analyses indicate 
that settlement after RAP treatment could be successfully estimated from elastic compression of 
the sand and RAP acting as a composite material. The composite reinforced soil mass, surrounded 
by liquefied soil, transferred load to the base of the RAP group inducing settlement in the non-
liquefied sand below the group. This test program identifies a mechanism that explains how 
settlement was reduced for the RAP group despite the elevated ru values in the silty sands that are 
often difficult to improve with vibratory methods.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: Rammed Aggregate Piers®, silty sand, liquefaction, liquefaction mitigation, 
liquefaction-induced settlement, blast-induced liquefaction 
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1 INTRODUCTION 

Much has been learned about the phenomenon of liquefaction produced by earthquake 

events in the past 50 years. This phenomenon has demanded the attention of researchers during 

this time because it has caused substantial damage to infrastructure in many recorded earthquake 

events. This damage is often extensive and costly. During the 2010 to 2011 Canterbury Earthquake 

Sequence (CES) the city of Christchurch, New Zealand suffered liquefaction-induced damage to 

51,000 residential properties, with approximately 15,000 residential houses damaged beyond 

repair (Wissmann et al., 2015). The 1989 Loma Prieta, California, earthquake (Mw = 6.9) is one of 

the costliest disasters in U.S. history, and resulted in estimated losses between US $7 and $9 

billion. Liquefaction-induced settlements caused service outages of important lifelines such as 

sewer, water, and natural gas, damage to airport runways and city streets, and destruction of 

buildings. Further damage was incurred by several fires within the city’s Marina district that could 

not be put out because of the water outages (Seed et al., 1991).  

The potential for enormous damage and loss of life in seismic events motivates continuous 

study of ground improvement. Soil improvement techniques are commonly used at sites where the 

existing soil conditions are expected to lead to unsatisfactory performance. Many soil 

improvement techniques have been invented in an attempt to reduce the effects of liquefaction and 
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to conserve infrastructure. While ground improvement is not necessarily a new field of study, 

many new techniques are being invented and are often used in practice before a full academic 

understanding of their improvement mechanisms is known. This thesis will investigate the 

mechanics of improvement for one technique known as Rammed Aggregate Piers®, which was 

originally developed by Geopier Foundation Company® in 1989. This system has been used in 

practice to effectively mitigate liquefaction effects, yet there is still much to be learned about the 

increases in liquefaction resistance produced by increased lateral pressure during RAP installation, 

soil densification, reduced excess pore pressure generation, and increases in stiffness from soil and 

RAP composite response.  

1.1 Objectives 

Much empirical evidence exists to confirm the effectiveness of RAP in coarse-grained 

soils. Less research is available to demonstrate their effectiveness in fine-grained soil types. 

Generally, densification techniques are less effective as fines content increases. As such, this thesis 

aims to uncover the mechanism of improvement by RAP groups in sandy soils with higher fines 

content. The key objectives are listed below: 

1. Investigate the ability of RAP groups to reduce the liquefaction potential of silty sand.  

2. Determine the ability of RAP groups to prevent liquefaction-induced settlement in silty 

sands. 

3. Improve understanding of the mechanisms involved in reducing liquefaction-induced 

settlement around RAP groups. 
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4. Develop a reliable, simple, and accurate settlement model that can provide realistic 

estimates to observed behavior.  

1.2 Scope of work 

To further investigate the potential of RAP columns to mitigate liquefaction hazard in silty 

sands, a full-scale test was performed in Bondeno, Italy, in conjunction with the National Institute 

of Geophysics and Volcanology in Italy (INGV). A site was chosen based on liquefaction 

observation from previous seismic events and the soil profile consisted of a clay to a depth of 3.4 

m underlain by liquefiable sand and sandy silt. A four by four quadrangular grid of rammed 

aggregate piers was installed to a depth of approximately 9.5 m. The 0.5 m diameter piers were 

spaced at 2 m center-to-center, creating a replacement ratio (the ratio of pier area to the tributary 

soil area surrounding the pier) equal to 5%. A profilometer was installed in the center of the RAP 

grid in order to record settlement with depth. Surface stakes were installed across the test site to 

record settlements in the improved and natural panels. Surface settlements were further verified 

by Terrestrial Laser Scanning (TLS) and aerial photogrammetry. Pore pressure transducers were 

placed at various depths to monitor the liquefaction effects on the subsurface profile. Additionally, 

accelerometers were installed at 3.5 and 4.5 m to record blast data. 

The liquefiable target layers at the test site in Bondeno contain higher fines content than 

other tests conducted on RAP columns. This experiment will further investigate the influence of 

soil densification, increased lateral earth pressures and increased profile stiffness from composite 

action on liquefaction resistance. 
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1.3 Statement of organization 

This thesis presents the details regarding the development of the case study, actions to 

execute the test, and results and conclusions from the data obtained. The reminder of the thesis 

consists of 9 chapters. Chapter 2 explains the current research in the area of liquefaction effects on 

deep foundations and gives sufficient background to the conceptual behavior. Chapter 3 describes 

methodologies typically used to mitigate against liquefaction. This chapter also describes the 

process of RAP installation and treatment mechanics in depth. Chapter 4 describes the preliminary 

investigations and analysis to determine the optimal site for the test in Bondeno, Italy. Chapter 5 

summarizes the site-specific installation details of the RAP installation. Chapter 6 offers details 

regarding the blast test procedure and instrumentation of the site. Chapter 7 describes the results 

from the blast test with respect to measured pore pressures, observed sand ejecta, measured 

settlements on the ground surface and with depth, as well as recorded accelerograms from blasting. 

Chapter 8 analyzes the results of blast-induced liquefaction with respect to settlements with depth, 

and the effects of lateral earth pressures. This chapter also examines the accelerogram data and 

attempts to use accelerations to estimate induced shear stresses and strains. Chapter 9 is a summary 

of the completed work and presents conclusions and areas of future research around these topics.  
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2 LIQUEFACTION 

2.1 Introduction to liquefaction 

Liquefaction is a broadly defined phenomenon that involves the reduction of stiffness and 

strength of a soil when excess pore water pressure builds up due to monotonically or cyclically 

applied strains to saturated cohesionless soil (Castro, 1969). As the pore water pressure increases, 

the soil structure collapses, and the soil starts to behave as a liquid. The rearrangement of soil 

particles results in a loss of effective stress and a decrease in shear strength due to the generation 

of excess pore water pressure (Narin van Court, 1997). Water pressure in the pore space of soil is 

directly correlated to the effective stress in cohesionless soil by the following equation: 

 σ′𝑣𝑣  =  σ − 𝑢𝑢𝑜𝑜 (2.1.1) 

where σ’v is effective stress, σ is total stress and uo is pore pressure. As pore pressures increase, 

the effective strength of the soil decreases. When the pore pressure equals the confining stress, 

liquefaction is triggered. Studer and Kok (1980) have demonstrated that at pore pressure ratios of 

80% confining stress liquefaction is incipient. Liquefaction phenomena that result from this 

process are divided into two main groups: flow liquefaction and cyclic mobility (Kramer, 1996).  

 Flow liquefaction occurs when the shear strength of the soil required to maintain static 

equilibrium is less than the existing static shear stress condition. Cyclic strains, or shock loading 

can temporarily reduce the shear strength of a soil mass and therefore cause flow liquefaction 
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failure. In the case of flow liquefaction failure, the applied shear strains will cause continuous 

deformations in the soil until the applied shear stresses are reduced to a level less than the viscous 

shear resistance of the liquefied material, or until dilatant action of the soil can arrest flow (Youd, 

1973). Flow liquefaction is the responsible mechanism for breathtaking and devastating slope 

failures such as the 2010 landslide in the Calabrian town of Maierato, Italy, and the Fort Peck Dam 

in 1938.  

 Cyclic mobility is another liquefaction phenomenon that differs from flow liquefaction in 

that its occurrence is brought about when the static shear stress is less than the shear strength of 

the liquefied soil. The deformations are instead caused by a combination of static shear stresses, 

and cyclic shear stresses that develop incrementally during earthquake shaking (Kramer, 1996). 

Cyclic mobility can occur even on flat ground, and when this happens it is termed level-ground 

liquefaction. During level-ground liquefaction little to no lateral soil movement occurs, but as the 

cyclically induced pore pressures later dissipate, the soil experiences volumetric shrinkage which 

is manifested on the ground surface as settlement (Ishihara and Yoshimine, 1992).  

The loss of effective strength and the settlements associated with dissipating pore pressures 

are primary causes of foundation failure and costly damages to structures and lifelines during 

liquefaction events. In 1964 two significant earthquake events led to the concentrated study of 

liquefaction behavior and its mollification. The first earthquake, known as the Great Alaskan 

earthquake (Mw = 9.2), occurred on Good Friday, March 27. The second earthquake occurred on 

June 16 in Niigata, Japan (Mw = 7.5). Both earthquake events caused heartbreaking deaths and 

expensive damages to structures and lifelines. These two earthquakes also provided evidence of 

liquefaction, such as landslides (flow liquefaction failure), and post-liquefaction settlement (cyclic 

mobility), among others. Much research has been performed since the mid-1960s to better 
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understand liquefaction. The interested reader may see Kramer (1996) for an in-depth summary of 

fundamental liquefaction behavior. His work provides a systematic approach that should be 

considered when evaluating liquefaction and its potential hazards. This systematic approach 

considers liquefaction susceptibility, liquefaction initiation, and liquefaction effects. Excerpts 

from his approach that pertain to level-ground liquefaction, or cyclic mobility, which is the subject 

of this thesis, will be shared. 

 

 Figure 2.1: Anchorage Alaska 1964 Earthquake. Right – Niigata Japan 
1964 Earthquake (After Kramer, 1996). 

 

2.2 Liquefaction susceptibility 

Not all soils are liquefiable. In order to efficiently analyze liquefaction hazards it is 

important for geotechnical engineers to be able to determine if liquefaction is possible at a given 

site. If liquefaction is not possible at a given site, then the effects of liquefaction do not need to be 

considered in the engineered design. Kramer (1996) identifies several criteria by which 

susceptibility can be determined. These include historical, geologic, compositional, and state 

criteria. 
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Historical liquefaction criterion respect that soils that have liquefied in the past are certainly 

susceptible to liquefy again. A study by Youd (1984) shows that a soil that has liquefied previously 

is likely to liquefy again if soil and groundwater conditions remain unchanged. Historical records 

of liquefaction have been used to create maps of susceptible areas. Characteristics from liquefied 

soils can also be tabulated and used to determine susceptibility of other areas possibly prone to 

liquefaction. Researchers often use historical evidence of liquefaction to guide their selection of 

experimental test sites (Amoroso et al, 2018).  

Only a narrow range of geologic environments will produce liquefiable soils (Youd, 1991). 

Liquefaction susceptibility is determined by the environment in which the soil was deposited, the 

hydrological conditions, and the age of the soil (Youd and Hoose, 1977). Alluvial, fluvial, and 

aeolian stratigraphic deposits have high liquefaction potential, because these soils were deposited 

in a loose state. For similar reasons, shallow (usually less than 15m deep) saturated soils with a 

young geologic age (deposited < 10,000 years ago), are susceptible. Since liquefaction is 

dependent on pore water pressure the susceptibility of liquefaction decreases with increasing 

groundwater table depth. Kramer (1996) points out that human-made soil deposits deserve 

consideration. Loose fills, such as those placed without compaction, are very likely susceptible to 

liquefaction.  

Since pore pressure is directly related to volumetric change, the compositional 

characteristics associated with high volume change potential tend to be associated with high 

liquefaction susceptibility (Kramer, 1996). Low angularity, poor-gradation, and uniform grain size 

are positively correlated to liquefaction susceptibility. Initially it was believed that only sands were 

liquefiable. Over time research has shown that gravels and non-plastic silts are also capable of 

liquefaction (Ishihara, 1984, 1985, 1993; Coulter and Migliaccio, 1966; Chang, 1978; Wong, 
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1984). As a general rule liquefaction susceptibility increases with grain size uniformity and 

decreases with fines content and grain angularity.  

Perhaps the most important determinant of liquefaction susceptibility is the state criteria of 

the soil. The initial state criteria consider the relationship between the effective confining stress, 

and the density of the soil. There are direct correlations between these parameters and the 

liquefaction susceptibility of a given soil. 

2.3 Evaluation of initiation of liquefaction 

In practicality, the amount of methods by which engineers and researchers assess site risks 

due to liquefaction is expanding, particularly as improvements are made in site exploration 

technologies. However, two main methods persist and will be discussed in this thesis: the cyclic 

strain and cyclic stress approaches. 

Between these two approaches, the cyclic strain approach may be more theoretically 

correct. Research has shown that densification of dry sands is controlled by cyclic strains rather 

than cyclic stresses (Silver and Seed, 1971; Youd, 1972). Furthermore, the tendency of dry sands 

to densify is directly correlated with the generation of excess pore pressure when saturated, and 

therefore pore pressure generation is more related to cyclic strains than cyclic stresses (Kramer, 

1996). The cyclic strain approach is considered reliable in that its predictions are insensitive to 

parametric changes other than cyclic strain amplitude. By this method, the cyclic strain during an 

earthquake is approximated by the following equation:  

 𝛾𝛾𝑐𝑐𝑐𝑐𝑐𝑐 = 0.65
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑔𝑔

𝜎𝜎𝑣𝑣𝑟𝑟𝑑𝑑
𝐺𝐺(ϒ𝑐𝑐𝑐𝑐𝑐𝑐)

 (2.3.1) 
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where amax is the peak ground acceleration during the design earthquake, g is gravity, rd is the stress 

reduction coefficient that accounts for the dynamic response of the soil profile, and G(ϒcyc) is the 

shear modulus of the soil at the given strain magnitude. As ϒcyc influences both sides of the 

equation, its value must be determined iteratively from a measured Gmax profile and appropriate 

modulus reduction curves (Kramer, 1996). Once ϒcyc is determined it is compared with the 

threshold shear strain, that is, the shear strain corresponding to initiation of interparticle sliding. If 

the cyclic strain is greater than this threshold strain, liquefaction is possible and liquefaction 

resistance must be evaluated.  While theoretically well founded, the cyclic strain approach is less 

commonly used by practicing engineers due to the difficulty in approximating cyclic strain. Since 

it is less commonly used in practice, this thesis will not explore the methods for estimating 

liquefaction resistance by this model, however, they can be further explored in the works of Dobry 

and Ladd, 1980; Dobry et. al, 1982; Dobry et al., 1984; and Vasquez-Herrera and Dobry, 1988.  

 The cyclic stress approach is the more commonly used approach in conducting a 

liquefaction initiation analysis. This approach compares with depth the cyclic shear stresses 

created by earthquake-induced loading, τcyc, (also called cyclic stress ratio, or CSR), and the 

liquefaction resistance of the soil, τcyc,L (also called cyclic resistance ratio, or CRR), which is the 

stress required to generate liquefaction within the profile. Liquefaction is anticipated at depths 

where the applied stress is greater than the resistance. The end result of this approach is a factor of 

safety against liquefaction which is calculated by dividing the resistance provided by the soil by 

the stress induced by the cyclic loading. A factor of safety less than or equal to one would indicate 

that liquefaction is likely to initiate under the designed conditions.  

 𝐹𝐹𝐹𝐹𝐿𝐿 =
𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐,𝐿𝐿

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐
=
𝐶𝐶𝐶𝐶𝐶𝐶
𝐶𝐶𝐶𝐶𝐶𝐶

 (2.3.2) 
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 Unlike the cyclic strain approach, the cyclic stress approach attempts to relate excess pore 

pressure with cyclic stresses instead of cyclic strains. While not as theoretically accurate, the 

relationship between cyclic stress and excess pore pressure is strong enough that good 

approximations can be made. At one point in time the shear stress required to trigger liquefaction 

was estimated from laboratory testing by subjecting specimens to uniform harmonic loading. 

During this period the only factors considered in liquefaction analysis were initial density and 

initial stress conditions. With time it was observed that many other factors affect liquefaction 

potential, such as: differences in soil structure produced by different methods of specimen 

preparation (Ladd, 1974; Mulilis et al., 1975; Toki et al., 1986; Tatsuoka et al., 1986); the history 

of prior seismic straining (Finn et al., 1970; Seed et al., 1975); overconsolidation ratio and lateral 

earth pressure coefficient (Seed and Peacock, 1971); length of time under sustained pressure 

(Ohsaki, 1969; Seed, 1979; Yoshimi et al., 1989). Furthermore, the correlations between 

unidirectional harmonic load testing in the laboratory and excess pore pressure ratio do not 

accurately reflect the pore pressure generated during multi-directional loading that occurs during 

seismic sequences (Seed et al., 1975). Due to the difficulty of characterizing liquefaction resistance 

by laboratory methods, other in-situ methods were eventually developed and are the primary basis 

for correlations today. 

 In 1971, Whitman described that liquefaction case histories could be used to characterize 

liquefaction resistance in terms of measured in-situ parameters. From this time forward in-situ 

testing processes have greatly developed and liquefaction characterization methods have been 

created for a variety of in-situ techniques, such as: cone penetration test (CPT) (Robertson, 2004, 

2007, 2009; Robertson and Wride, 1998; Idriss and Boulanger, 2008; Olsen, 1997; Suzuki et al., 

1995), shear wave velocity (Sykora, 1987; Kayen et al., 1992; Robertson et al., 1992; Andrus and 
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Stokoe, 1997, 2000; Andrus et al., 2004), dilatometer (DMT) index (Marchetti, 1982; Robertson 

and Campanella, 1986; Reyna and Chameau, 1991; Tsai et al., 2009), and standard penetration test 

(SPT) (Seed and Idriss, 1971, 1982; Seed et al., 1983; Seed et al., 1985; Cetin et al, 2004; Idriss 

and Boulanger, 2004, 2010, 2014). In many respects, the SPT approach is being overtaken by the 

more reliable CPT test, however the SPT approach remains popular in present practice. 

Correlations between CPT and SPT also allow for substitutions of parameters from either test into 

approximations (Robertson and Campanella, 1983). At the test site in Bondeno, Italy, in-situ 

explorations were primarily obtained using CPT and DMT, with liquefaction analysis being 

performed using CPT methods. As such, only the CPT method presented by Youd et al. (2001) 

will be discussed in this presentation. 

   The CPT test correlates well with liquefaction resistance since the factors that increase 

liquefaction resistance (e.g. density, prior seismic straining, overconsolidation ratio, lateral earth 

pressures, non-uniformity, and time under sustained pressure) also tend to increase CPT cone tip 

resistance (Kramer, 1996). Furthermore, the nearly continuous nature of the CPT sounding 

provides a more detailed estimation of liquefiable layers. As described by Youd et al. (2001) at the 

NCEER workshop on liquefaction resistance of soils, this stratigraphic capability of CPT makes it 

a particularly advantageous tool for determining liquefaction-resistance. In 1998, Robertson and 

Wride prepared curves (shown in Figure 2.2) for the direct determination of CRR for clean sands 

(FC≤5%) from case history CPT data obtained from several investigations. Figure 2.2 plots the 

normalized cone tip resistance against known values of CSR or CRR for case histories of 

magnitude 7.5 earthquakes, and depicted the line of separation between data indicative of 

liquefaction and nonliquefaction. Figure 2.2 provides the CRR against earthquakes of Mw =7.5 

only, to obtain the CRR for earthquakes of different magnitude the additional application of a 
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magnitude scaling factor (MSF) must be applied. The MSF will be discussed in further detail in a 

later paragraph. 

 

 Figure 2.2: Curve recommended for calculation of CRR from CPT data 
along with liquefaction data compiled case histories (after Youd et al, 
2001). 

 

 The clean-sand based curve from Figure 2.2, or rather, the CRR for Mw =7.5 (CRR7.5), is 

given by the following equation(s): 

 
𝑖𝑖𝑖𝑖 (𝑞𝑞𝑐𝑐1𝑁𝑁)𝑐𝑐𝑐𝑐 < 50  𝐶𝐶𝐶𝐶𝐶𝐶7.5 = 0.833 �

(𝑞𝑞𝑐𝑐1𝑁𝑁)𝑐𝑐𝑐𝑐
1000

� + 0.05 
(2.3.3) 

 
𝑖𝑖𝑖𝑖 50 ≤  (𝑞𝑞𝑐𝑐1𝑁𝑁)𝑐𝑐𝑐𝑐  <  160  𝐶𝐶𝐶𝐶𝐶𝐶7.5 = 93 �

(𝑞𝑞𝑐𝑐1𝑁𝑁)𝑐𝑐𝑐𝑐
1000

�
3

+ 0.08 
(2.3.4) 

Where (qc1N)cs is the clean-sand cone penetration resistance normalized to approximately 100 kPa 

(1 atm).   

 The procedure for obtaining (qc1N)cs is comprised of several steps and is provided by 

Robertson and Wride (1998). The process is summarized as follows. First, the cone tip resistance 
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is normalized to one atmosphere of pressure, thus yielding a dimensionless cone penetration 

resistance, qc1N.  

 𝑞𝑞𝑐𝑐1𝑁𝑁 = 𝐶𝐶𝑄𝑄(
𝑞𝑞𝑐𝑐
𝑃𝑃𝑎𝑎

) (2.3.5) 

where   

 𝐶𝐶𝑄𝑄 = (
𝑃𝑃𝑎𝑎
𝜎𝜎′𝑣𝑣0

)𝑛𝑛 < 1.7 (2.3.6) 

and where CQ is the normalizing factor for cone penetration resistance, Pa is one atm of pressure 

in the same units as σ’v0, n is an exponent that varies with soil type, and qc is cone penetration 

resistance.  

 As discussed previously, the fines content and plasticity of soil greatly influence its 

liquefaction potential. This CPT method accounts for this by using the Robertson and Wride (1998) 

approach to estimating soil type by using cone tip resistance, qc, and sleeve friction, fs. The ratio 

of fs/qc is labeled the soil behavior type index, Ic, and can be used to account for effects of soil 

characteristics on qc1N and CRR. Ic is especially useful because its value represents a concentric 

circle that serves as the boundary between different soil types. The different soil type zones 

presented by Robertson and Wride (1998) are shown in Figure 2.3. The soil behavior type index, 

Ic is computed as an intermediate step in determining (qc1N)cs. Ic in general is computed using the 

following equations: 

 𝐼𝐼𝑐𝑐 = [(3.47 − log(𝑄𝑄))2 + (1.22 + log(𝐹𝐹))2]0.5 (2.3.7) 

 𝑄𝑄 = �
𝑞𝑞𝑐𝑐 − 𝜎𝜎𝑣𝑣0

𝑃𝑃𝑎𝑎
� [

𝑃𝑃𝑎𝑎
𝜎𝜎′𝑣𝑣0

]𝑛𝑛 (2.3.8) 

 
𝐹𝐹 = �

𝑓𝑓𝑠𝑠
𝑞𝑞𝑐𝑐 − 𝜎𝜎𝑣𝑣0

� 𝑋𝑋100% 
(2.3.9) 
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where Q is the dimensionless CPT tip resistance, F is the normalized friction ratio, qc is CPT tip 

resistance, σv0 is total vertical stress, Pa is 1 atm of pressure in the same units as σ, σ’v0 is vertical 

effective stress, and n is a stress exponent related to soil type. The plot in Figure 2.3 is developed 

assuming a value of 1.0 for n. 

 

 Figure 2.3: CPT-Based soil behavior type chart (after Youd et al, 2001).  

Robertson and Wride (1998) recommend the following procedure for calculating Ic. The 

first step is to differentiate between clay type soils and sands or silts. This is done by first 

computing the dimensionless CPT tip resistance, Q, using a stress exponent of 1.0. If the resulting 

Ic value is > 2.6 the soil is classified as clayey and is considered too clay-rich to liquefy, and the 
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liquefaction susceptibility analysis is complete (Youd et al, 2001). The NCEER workshop 

guidelines specify that soils with high fines content should still be sampled and that liquefaction 

susceptibility should be verified using the criteria known as the ‘Chinese’ criteria which are 

defined by Seed and Idriss (1982). These criteria specify that liquefaction can only occur if the 

following three criteria are met: 1) the clay content is <15% by weight, 2) the liquid limit < 35%, 

3) The in-situ moisture content > 0.9 times the liquid limit.  

 If, however, the resulting Ic < 2.6 then the soil is likely coarse grained, and Cq and Q are 

recalculated using a stress exponent, n, of 0.5. If after this calculation Ic < 2.6 then the soil is 

classified as nonplastic and granular. For these soils, this value of Ic is used in liquefaction 

resistance calculations. If, however, the recalculated Ic < 2.6, then the soil is likely silty and 

possibly plastic, and hence, Ic should be calculated using the value of qc1N from equation 2.5.5 

using a stress exponent, n, of 0.7. For these soils, this value of Ic is used to compute liquefaction 

resistance. 

 Finally, the normalized penetration resistance (qc1N) for silty sands is corrected to an 

equivalent clean sand value (qc1N)cs using the following equation: 

 (𝑞𝑞𝐶𝐶1𝑁𝑁)𝑐𝑐𝑐𝑐 = 𝐾𝐾𝑐𝑐𝑞𝑞𝑐𝑐1𝑁𝑁 (2.3.10) 

where Kc is a correction factor for grain characteristics. The Kc term is defined by the following 

equation (Robertson and Wride, 1998): 

 𝑓𝑓𝑓𝑓𝑓𝑓 𝐼𝐼𝑐𝑐 ≤ 1.64  𝐾𝐾𝑐𝑐 = 1.0 (2.3.11) 

 𝑓𝑓𝑓𝑓𝑓𝑓 𝐼𝐼𝑐𝑐  >  1.64  𝐾𝐾𝑐𝑐 = −.403𝐼𝐼𝑐𝑐4 + 5.581𝐼𝐼𝑐𝑐3 − 21.63𝐼𝐼𝑐𝑐2 + 33.75𝐼𝐼𝑐𝑐 − 17.88  (2.3.12) 

 Once the appropriate Ic, Kc, and (qc1N)cs values are obtained the CRR7.5 can be computed 

using equations 2.5.3 and 2.5.4. The computed CRR7.5 can then be adjusted by a magnitude scaling 
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factor for magnitudes other than 7.5 (Youd et al, 2001). Several MSF have been proposed, although 

the one considered in this thesis was developed for sands by Idriss (1999). At the time of the 

NCEER workshop in 2001 this MSF method was still new enough that it was not recommended 

in the workshop procedures. Since that time the Idriss (1999) method has gained much popularity 

in practical use. The equation is as follows: 

 𝑀𝑀𝑀𝑀𝑀𝑀 = 6.9 ∗ exp �
−𝑀𝑀

4
� − 0.058 ≤ 1.8 (2.3.13) 

where M is the moment magnitude of the earthquake. It is important that if this MSF is used that 

an accompanying set of equations be used when computing the cyclic stress amplitudes applied to 

the soil. In addition to the MSF, two additional scaling factors are applied to the CRR, an 

overburden correction factor, Kσ, and a correction factor for sloping ground, Kα. Since the test 

taken place in this thesis occurred on level ground, the Kα factor was neglected. The Kσ can be 

estimated from the following equations (Boulanger and Idriss, 2014): 

 
𝐾𝐾𝜎𝜎 = 1 − 𝐶𝐶𝜎𝜎 ln�

𝜎𝜎𝑣𝑣′

𝑃𝑃𝑎𝑎
� ≤ 1.1 

(2.3.14) 

 𝐶𝐶𝜎𝜎 =
1

18.9 − 2.55�(𝑁𝑁1)60𝑐𝑐𝑐𝑐
≤ 0.3 (2.3.15) 

where σv0’ is the vertical effective stress, and Pa is the one-ton atmospheric overburden pressure 

(≈2000 psf, 100 kpa). The final CRR value for a given earthquake magnitude is then: 

 𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐶𝐶7.5 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝐾𝐾𝛼𝛼 ∗ 𝐾𝐾𝜎𝜎 (2.3.16) 

The uniform cyclic shear stress amplitude for level ground is estimated using the simplified 

procedure put forth by Seed and Idriss (1971): 
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 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐 = 0.65
𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑔𝑔

𝜎𝜎𝑣𝑣𝑟𝑟𝑑𝑑 (2.3.17) 

where amax is the peak ground surface acceleration, g is the acceleration of gravity, σv is the total 

vertical stress, and rd is a stress reduction factor for the depth of interest. The rd term was studied 

by Idriss (1999), who extended the work of Golesorkhi and Seed (1989), by performing hundreds 

of parametric site response analyses, and determined that rd could be expressed by the following 

equations: 

 ln (𝑟𝑟𝑑𝑑) = 𝛼𝛼(𝑧𝑧) + 𝛽𝛽(𝑧𝑧) ∗ 𝑀𝑀𝑤𝑤 (2.3.18) 

 𝛼𝛼(𝑧𝑧) = −1.012 − 1.126sin (
𝑧𝑧

11.73
+ 5.133) (2.3.19) 

 𝛽𝛽(𝑧𝑧) = 0.106 + 0.118sin (
𝑧𝑧

11.28
+ 5.142) (2.3.20) 

where z is the depth below the ground surface in meters, Mw is the moment magnitude of the 

earthquake, and the arguments inside the terms are in radians. These equations are valid for depths 

≤ 34 m. For depths greater than 34 m, the following equation must be used:  

 𝑟𝑟𝑑𝑑 = .12exp (0.22𝑀𝑀𝑤𝑤) (2.3.21) 

The final expression for CSR by the Seed and Idriss (1971) simplified procedure is: 

 𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑤𝑤=7.5 =
𝐶𝐶𝐶𝐶𝐶𝐶
𝑀𝑀𝑀𝑀𝑀𝑀

=
𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐

𝜎𝜎′𝑣𝑣0(𝑀𝑀𝑀𝑀𝑀𝑀)
= 0.65

𝜎𝜎𝑣𝑣0 ∗ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝜎𝜎′𝑣𝑣0 ∗ 𝑔𝑔

∗
𝑟𝑟𝑑𝑑
𝑀𝑀𝑀𝑀𝑀𝑀

 (2.3.22) 

The factor of safety against liquefaction can then be written as: 

 
𝐹𝐹𝐹𝐹𝐿𝐿 =

𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑤𝑤=7.5

𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑤𝑤=7.5
 

(2.3.23) 
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Plotting the FSL with depth, or the CSR and CRR with depth, provides a visual of where 

liquefaction is anticipated within the soil profile. An example of CSR vs CRR with depth is 

provided in Figure 2.4.  

 

 Figure 2.4: Plot of CSR vs CRR to determine zone of liquefaction with 
depth (After Kramer, 1996). 

 

 Approximations of FSL have been correlated to excess pore pressure ratio, ru, and these 

FSL criteria can facilitate back-calculations where only pore pressure data is available. Several 

correlations have been proposed and are presented by Marcusson and Hynes (1990) in Figure 8.1. 

This figure provides engineers with a range of FSL that varies with observed excess pore pressure 

generation. These correlations were integral to the post-processing work for this project. 

A critical parameter to define for liquefied soils is the steady state strength, that is, the 

liquefied shear strength of the soil. Although of cardinal importance, the liquefied shear strength 

is difficult to obtain in practice. Three of the most general methods for its estimation are laboratory 

techniques, in-situ techniques, and normalized strength techniques.  
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The laboratory procedure for liquefaction evaluation outlines a series of five steps: i) 

Determine in-situ void ratio; ii) Determine steady-state void ratio, or density, as a function of 

effective stress using compacted specimens; iii) Determine undrained steady-state strengths for 

undisturbed specimens; iv) Correct measured undrained steady-state strengths to in-situ void ratio; 

v) Calculate in-situ driving shear stress and the factor of safety (Poulos et al., 1985). These steps 

represent a holistic approach to evaluating liquefaction potential, of which estimating the 

undrained steady state strength is but one step. These steps will not be further discussed in this 

thesis, though the reader is encouraged to reference the cited study for additional information. 

In-situ methods are the most common way to estimate the residual undrained shear 

strength. In 1986 Seed suggested a method to back calculate the residual strength, Sr, from case 

histories of historical liquefaction, and to correlate Sr to equivalent clean sand SPT corrected blow 

counts (N1)60cs-Sr (Seed, 1986). 18 case history sites were selected in this study, of which 13 had 

SPT data, while only four had available CPT data. As such, the correlation between Sr and SPT 

was first developed. Revisions were made to this method in a sequential study a few years later 

(Seed and Harder, 1990). The method requires that the soil have fewer than 10% fines content, or 

that the SPT blow count (N) value be corrected for fines. The corrected (N1)60-cs is determined by 

summing the measured SPT blow count, corrected for hammer efficiency, (N1)60 value with the 

correction factor for fines content, Ncorr. Values for Ncorr have been suggested by Seed and Harder 

(1990), as well as Stark and Mesri (1992), and are given in Table 2.1. Once (N1)60-cs is obtained 

the residual undrained shear strength can be estimated by Figure 2.5  proposed by Seed and Harder 

(1990).  Correlations to Sr were then made using qc as obtained by the CPT by way of converting 

to equivalent (N1)60-cs (Idriss and Boulanger, 2007).  
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 Table 2.1: Recommended fines correction for estimation of residual 
undrained shear strength by Seed-Harder and Stark-Mesri  

Procedures (After Kramer, 1996). 

 

 

 

 Figure 2.5: Correlation between (N1)60-cs to residual undrained shear 
strength (After Seed and Harder, 1990). 

 

 Normalized strength methods allow for estimations of the residual undrained shear strength 

to be made from initial effective stresses. The theory is based on the premise that if, for a given 

soil, if the consolidation curve and the steady state line are parallel, then the steady state strength 

should be proportional to the consolidation stress (i.e., Ssu/σ’c = constant) (Kramer, 1996). A 
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number of studies found that if a specimen of soil could be prepared to resemble in-situ conditions 

and is tested in undrained shear, then the resulting residual strength ratio could be theorized to 

closely represent field conditions (Vasquez-Herrera et al., 1990; Baziar et al., 1992; Ishihara, 

1993). Using this understanding Olson and Stark (2002) performed tests to back-calculate residual 

strength ratios from various case histories of flow liquefaction. They were able to generate an 

equation to relate the residual strength ratio (Sr) to SPT blow count. However, since large 

uncertainties are introduced into this method by the non-uniformity of a given sandy soil profile 

their correlation are only approximations and must be used with judgment.  

 With time research has continued to build upon engineers’ ability to estimate the Sr for 

liquefied soils. In recent years more empirical relationships have been generated between the initial 

vertical effective stress and both the CPT qc (Robertson, 1999; Olson and Stark, 2002), and the 

SPT N160 values (Idriss and Boulanger, 2007; Kramer and Wang, 2015; Olson, 2015). These 

relationships are consistent with behavior observed during laboratory testing, yet they are 

calibrated on the basis of back-calculated flow-slide case histories. Since the correlations are based 

on a limited number of case histories, the availability of multiple predictive models is of benefit to 

allow consideration of a variety of outcomes. 

2.4 Liquefaction-induced settlement 

When a FSL ≤ 1 liquefaction is expected, its effects must be considered in design. In the 

case study presented in this thesis, liquefaction (more correctly, cyclic mobility) was triggered in 

a level ground site with a silty sand and sandy silt profile to measure the effectiveness of a 

proprietary ground improvement technique, which will be discussed in a later section. Successful 

liquefaction mitigation was measured by considering the reductions of post-liquefaction settlement 
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and excess pore pressure generation. Settlement due to cyclic mobility can occur in both dry and 

saturated sands, though in this thesis only the saturated case will be examined. After porewater 

pressures dissipate the soil particles rearrange themselves into a denser configuration. This 

rearrangement, or volumetric strain, leads to ground settlement. Depending on their magnitude 

ground settlements can cause significant damage to buried lifelines, pavements, concrete, and 

building structures. Structures founded on deep foundation elements, such as piles, may experience 

significant settlement due to the development of negative skin friction, or dragload.  

A number of prediction models have been developed for liquefaction-induced strains in 

saturated sands (Tokimatsu and Seed, 1987; Ishihara and Yoshimine, 1992; Zhang et al., 2002). 

The method proposed by Zhang et al. (2002) is an integrated CPT-based approach for level-ground 

sites and the total liquefaction-induced settlement throughout the profile can be computed by: 

 
𝑆𝑆 = �𝜀𝜀𝑣𝑣𝑣𝑣𝛥𝛥𝑧𝑧𝑖𝑖

𝑗𝑗

𝑖𝑖=1

 
(2.4.1) 

where εvi is the post-liquefaction volumetric strain for the soil sublayer i, and Δzi is the thickness 

of the sublayer i, and j is the number of soil sublayers. The origins of this approach began when 

Nagase and Ishihara (1988) performed cyclic simple shear tests, on saturated loose, medium-dense, 

and dense samples of Fuji River sand. In their work they simulated both unidirectional and 

multidirectional loading conditions of earthquakes by employing irregular time histories of 

motions observed during major earthquakes in Japan between 1964 and 1983. They measured the 

volumetric strains in their samples as pore pressures dissipated following the undrained loading 

conditions. Based on the laboratory work of Nagase and Ishihara (1988), Ishihara and Yoshimine 

(1992) generated a family of curves, shown in Figure 2.6, which correlated the volumetric strain 

due to pore pressure dissipation with relative density (Dr), and the factor of safety against 
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liquefaction (FSL) for clean sands. Using empirical correlations between Dr and cone tip resistance 

(qc) (Jamiokowski et al., 1985; Tatsuoka et al., 1990), Zhang et al. (2002) were able to develop 

curves similar to those of Ishihara and Yoshimine (1992) for volumetric strain based on the 

parameter for clean sand normalized CPT resistance (qc1N)cs. The set of curves is shown in Figure 

2.7 and the accompanying equations for varying factors of safety are provided in Table A.1 of 

Appendix A. Layer by layer these equations are executed if the FSL, as determined by the CPT 

approach (Robertson and Wride, 1998), is less than 1 in order to compute the overall settlement of 

the profile. The flowchart for evaluation of CRR7.5 using Robertson and Wride’s (1998) CPT-

based method is also provided in Figure A.1 of Appendix A. The flowchart steps through the same 

computations outlined in the previous section, and assists the engineer in computing volumetric 

strains for only those soils deemed liquefiable. 

 

 Figure 2.6: Curves for estimating the postliquefaction volumetric strain 
of clean sands (modified after Ishihara and Yoshimine, 1992). 
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 Figure 2.7: Relationship between postliquefaction volumetric strain and 
equivalent clean sand normalized CPT tip resistance for different factors 
of safety (FSL) (after Zhang et al, 2002). 

 

The Zhang et al. (2002) approach was used in this thesis as the basis for estimating the 

liquefaction induced volumetric strain and settlement in the untreated and treated soil profiles. As 

shown in Table A.1, the volumetric strain equations are only provided for FSL of 0.5-2.0 at 

increments of 0.1. By interpolating between the equations for the discrete FSL provided we were 

able to find good agreement with the observed settlement in the untreated soil profile, which will 

be discussed in greater detail in a later section.  

2.5 Summary 

Since the liquefaction awakening in the 1960’s much has been learned about this 

phenomenon from both a theoretical and empirical standpoint. Engineers have tools to help make 

predictions about liquefaction-induced settlements and soil strengths. There is, however, still much 
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to be learned. Many of the existing relationships were made possible by the availability of case 

histories from which soil parameters were estimated using back-calculation methods. As more case 

histories are performed, their data can contribute to a more accurate predictive models, and a better 

understanding of the true behavior during liquefaction. 
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3 RAP AND LIQUEFACTION MITIGATION 

The potential for enormous damage and loss of life in seismic events motivates continuous 

study for ground improvement. Soil improvement techniques are commonly used at sites where 

the existing soil conditions are expected to lead to unsatisfactory performance. Most generally, 

unsatisfactory performance involves large soil movements (Kramer, 1996). Under aseismic 

conditions most soil improvement techniques aim to increase the strength and stiffness of soil 

deposits. However, in a liquefaction event the strain potential of the soil is also directly tied to the 

excess porewater pressure generation. Consequently, mitigation techniques against seismically-

induced settlement seek to reduce excess porewater pressure generation, while simultaneously 

increasing the strength and stiffness of the soil (Kramer, 1996).  

Liquefaction-induced damage can be expensive, yet they are often difficult to predict. On 

the other hand, ground improvement is also expensive and can typically add between three and ten 

percent to the total project budget. For this reason, advances in soil improvement technologies are 

ongoing, and are generally led by specialty contractors aiming to reduce construction costs, or 

offer a better product. Kramer (1996) explains that research and explanatory “theories” often 

follow implementation of widely used techniques. While the methods of ground improvement 

technologies changes rapidly, liquefaction effects are typically reduced by one of four 

improvement mechanistic categories: drainage, grout and soil mixing, reinforcement, and 

densification.   
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3.1 Existing mitigation techniques 

3.1.1 Drainage 

The provision of drainage avenues for excess pore pressures reduces liquefaction potential, 

since liquefaction is triggered by the buildup of porewater pressures and a subsequent loss of 

effective stress in the soil. As such, much liquefaction potential can be removed if the groundwater 

table can be lowered below the area of interest prior to cyclic loading, or if pore pressures can be 

allowed to drain during the load cycle. Dewatering the ground can act as a temporary protection 

against liquefaction, however, this option is not a sustainable long-term solution as it requires 

constant expensive pumping. Furthermore, if the site is subject to recharge it could lead to a 

perched water table above the pump depth and negate the effectiveness of the pump altogether. An 

alternative solution is to provide drainage for excess pore pressures can rapidly dissipate, thereby 

preventing liquefaction from occurring. Drainage techniques utilizing vertical gravel columns to 

mitigate liquefaction effects were initially pioneered by Seed and Booker (1977). Stone columns 

and RAP piers are excellent examples of this type of gravel drains. Conservatively, designers 

typically rely more on the soil improvements implicit with densification rather than drainage 

associated with gravel piers. This may be because investigators have found that sand infiltration 

can reduce the hydraulic conductivity and flow capacity of gravel drains (Boulanger et al., 1997).  

3.1.2 Grout and soil mixing 

The engineering properties of the soil can be improved by injecting or mixing cementitious 

materials into the treatment area. Grouting techniques fill the void space and fractured zones of 

the soil while keeping the general soil particle structure intact. Mixing techniques disturb the soil 

structure and physically mix cementitious materials with the soil.  
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The term grouting is used to describe a variety of processes by which cementitious material 

is introduced into the ground. Low or high viscosity grout is introduced into the ground with, or 

without, high pressures. Depending on the chosen technique the soil structure can remain intact, 

or fractured in a controlled manner to improve densification. In addition, the grout strengthens the 

bonds between soil particles, creating a type of soil skeleton (Kramer, 1996).   

Soil mixing techniques differ from grouting techniques because the soil is mechanically 

mixed, by large auger-mounted paddles, with the cementitious material being introduced into the 

profile. The cement can be introduced into the ground in the wet form (as a slurry), or in dry form 

(as a powder), which uses the water in the ground to complete the cement hydration process 

(Menard, 2020). Case histories involving the use of soil mixing for mitigation of seismic hazards 

have been presented by Ryan and Jasperse (1989), Babasaki et al., (1991), and Taki and Yang 

(1991).  

3.1.3 Reinforcement 

Often the most effective way to reduce liquefaction susceptibility is to replace the soil with 

a non-susceptible soil. Excavation and replacement of the susceptible soil is the surest way to 

remove the liquefaction hazard. Since this is often not possible, many reinforcement techniques 

have been developed to improve the strength and stiffness of in-situ soil deposits. Reinforcement 

generally consists of introducing rigid inclusions into the soil, such as steel, concrete, timber, or 

gravel.  

Rigid inclusions are any structural element introduced to reinforce the soil profile by way 

of drilling or augering. With respect to liquefaction, drilled inclusions are most often used in slope 

stabilization to increase shear strength. Large drilled shafts placed close together form secant pile 
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walls that have often been used to stabilize slopes and dams. Other forms of drilled inclusions 

include tiebacks, soil nails, and micropiles (Kramer, 1996). Liquefaction-induced downdrag has 

also been proven to apply to drilled shafts (Ishimwe, 2018; Muhunthan et al., 2017).  

3.1.4 Densification 

Densification is the most commonly used technique for liquefaction mitigation. As 

discussed previously, looser soils have a greater void ratio and hence, a greater tendency to 

generate positive excess porewater pressure due to cyclic loading than do denser soils. These 

tendencies lead to a higher potential for volumetric change post-liquefaction in looser soils. 

Densification techniques reduce the void ratio of soil before the liquefaction event. A wide variety 

of techniques can be used depending upon the specific conditions of each project. Approaches to 

achieve densification range from basic vibratory methods to deep dynamic compaction (DDC) and 

controlled blasting. Only vibratory techniques will be discussed further as they are similar in nature 

to RAP.  

3.1.4.1 Vibratory compaction and vibratory replacement 

Most vibro techniques use probes that are vibrated through the soil in order to densify the 

soil deposit throughout its entire thickness. Castro (1969) explains that when strong vibratory 

disturbances act upon a sand mass it tends to produce a reduction of its volume irrespective of the 

density or the degree of saturation of the sand. Field experience on soil compaction has also 

indicated that vibration is the most efficient procedure to compact cohesionless materials. Vibro 

techniques can be effective by vibrating horizontally (vibroflotation) as well as vertically (vibro 

rod systems).  
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Vibroflotation has been used since 1930 and uses a horizontally vibrating probe, called a 

vibroflot, to densify cohesionless soils by simultaneous vibration and saturation (Brown, 1977). 

The vibroflot probe described by D’Appolonia (1954) is a long (approximately 12 ft.), slender (15 

in. outside diameter) tube with an upper and lower compartment. The upper compartment houses 

a water-cooled electric motor that drives a 200-lb eccentric shaft held within the lower 

compartment. The 1-1/4 in. eccentric shaft spins at 1800 rpm., generating a centrifugal force of 10 

tons which is responsible for the horizontal vibratory energy required for the compaction of loose 

sand. The vibroflot is initially lowered to the bottom of the soil deposit by vibration and water or 

air jetting through openings in the point of the cone that creates a “quick” condition, reducing the 

impedance of the cone into the soil under its self-weight of approximately 2 tons. When the probe 

reaches the desired depth for compaction, the water supply is transferred from the bottom of the 

cone to the top jets, which both aids in compaction and retrieval of the probe as it is withdrawn at 

a rate of about 1ft/min. As the soil is compacted a conical depression is created at the ground 

surface. Fill material can be added either from the ground surface or from a bottom fed probe in 

order to compensate for the settlements due to compaction (Kramer, 1996).  

The vibroflot process is repeated in a grid formation across the construction site. 

Vibroflotation can be effective up to radial distances of 5 ft. from the probe, and has been 

successfully used to densify soils to depths of up to 115 ft. (Kramer, 1996; D’Appolonia, 1954). 

Vibroflotation becomes ineffective, however, as fines content increases. Silt and clay soils hold 

water and do not dissipate pore pressures when subjected to compaction. Hence, vibroflotation has 

been shown to be effective in soils with fines content less than 20% and clay contents below (3%) 

(Kramer, 1996). 
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The vibro rod system is similar to vibroflotation, but uses a vibratory pile driving hammer 

to produce vibrations in the vertical direction as it pushes a long probe to the desired depth of 

improvement. A variety of probes have been developed to maximize densification (see 

Terraprobe, Vibro-Wing, Franki Y-Probe, among others) and by adjusting the frequency of 

vibration, the probes can be tuned to the resonant frequency of the soil-probe system to increase 

vibration amplitudes and densify the soil more effectively (Kramer, 1996). As with vibroflotation, 

fill material is added to reduce densification-related surface settlements. Unlike vibroflotation, the 

rods use vertical vibratory energy, which is less influential radially than vibroflotation. The grid 

spacing of vibro rod improvement is often tighter than vibroflotation. Finally, the effectiveness of 

vibro rods has been shown to vary with depth (Janes, 1973).  

3.1.4.2 Vibro replacement 

Vibro replacement is the construction of aggregate piers within a soft soil profile. The piers 

are constructed using either the dry method or the wet method. In the dry method a vibratory shaft 

is probed into the ground at depth and aggregate is fed through the shaft as it is raised incrementally 

to the ground surface. Under certain conditions dry construction may require pre-drilling to 

achieve the required depth if the ground is too dense for the vibrator to penetrate. The wet method 

of construction introduces the fill aggregate at the surface and uses the same vibratory shaft, along 

with jetted water, to lower the aggregate through the net zero stress area around the shaft and create 

the pier. This process is repeated incrementally until the ground surface is reached. 

Vibro replacement helps achieve higher soil density by introducing high modulus material 

into the profile. In cases where drilling is required the softer native soil is removed altogether, 

leaving more volume for the denser fill material. Vibro replacement piers do more than increase 

densification alone, some techniques also reinforce the soil properties. This is an added benefit in 
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soils with medium fines content since vibratory compaction methods are less effective when fines 

are present. Mitchell (1981) reports that vibrocompaction methods are generally ineffective when 

the percentage by weight of fines exceeds 20 to 25. Figure 3.1 shows the particle size distribution 

where vibrocompaction is effective. 

 

 Figure 3.1: Range of particle size distributions suitable for densification 
by vibrocompaction (after Mitchell, 1981). 

 

In general, soils with higher fines content are difficult to improve using vibratory methods 

because their low permeability makes it difficult to expel water quickly. Additionally, fines tend 

to strengthen the soil structure, making it more difficult to vibrate them into a denser state. Several 

studies have demonstrated the ineffectiveness of vibratory improvement in soils with Ic > 2.6 

(Mitchell, 1982; Rollins et al., 2006; Rollins et al., 2012). At Ic values above 2.3 CPT tip resistance 

and SPT blow counts can, in fact, decrease after vibratory improvement is installed. Rollins et al. 

(2012) performed an interesting comparison of pre- and post-improvement CPT soundings for a 

bridge abutment constructed on stone columns near Roy, Utah. Their findings are presented in 

Figure 3.2 which shows the percentage change from the pre- and post-improvement CPT in both 
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the unaveraged, and averaged forms. This figure shows that vibratory improvement reduces CPT 

tip resistance above Ic = 2.3. 

 

 Figure 3.2: Plot showing the percentage change in qc1n-cs after stone 
column treatment for averaged and unaveraged values (after Rollins et 
al., 2012). 

 

3.1.4.3 Stone columns 

Stone columns (SC) are a most common vibro replacement technique that consist of dense 

columns of gravel that can be used in both fine- and coarse-grained soils to improve soil density 

and shear strength. As discussed previously, SC can also increase liquefaction resistance by 

allowing for radial drainage of excess pore pressures. SC can be installed by the vibroflotation 

process described in an earlier section, or by another method called the Franki method. This 

process involves driving a steel casing, with an openable bottom, to the desired depth. Once the 

desired depth is reached the bottom of the steel casing is opened and gravel is inserted through the 
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steel casing. The gravel is pounded past the casing depth to form a bulb of gravel, after which the 

casing is raised in incremental lifts and the process is repeated to form a column (Kramer, 1996).  

 SC improve liquefiable soil deposits by at least four different mechanisms. First, the gravel 

adds stiffness, density, and strength to the existing profile. Second, they provide grid-spaced 

drainage paths for excess porewater pressures. Third, the installation process densifies the 

surrounding soil by the vibration and pounding required to construct the SC. Fourth, the process 

increases the lateral stresses in the soil surrounding the SC (Kramer, 1996). Stone columns are 

quite similar to the RAP improvement procedure that will be further explored in this thesis. 

Proponents of RAP believe RAP to be superior to SC because they have a higher friction angle, 

greater increase of lateral stress, and have historically outperformed SC. 

3.2 RAP reinforcement 

A final type of ground-improvement technique will be discussed, and which is the focus of 

this thesis. Rammed Aggregate Piers® (RAP) are a proprietary ground improvement technique 

which were originally developed by Geopier Foundation Company® in 1989. Like SC, RAP 

columns are more effective than vibratory densification techniques in soils with higher fines 

content because they increase soil density, provide drainage for excess porewater pressures, and 

increase shear stiffness and shear resistance of the soil (Priebe, 1998 

 In recent years RAP have been increasingly used as a cost-effective solution to increase 

the overall strength and stiffness of incompetent soil profiles. RAP are used to support footings 

ranging in column load from less than 200 kN (50 kips) to as large as 13,300 kN (3,000 kips). 

They are used to reinforce soils for landslide control, embankment support and retaining wall 

support (Wissmann et al., 2001). In this section I will describe the construction methodology of 



www.manaraa.com

36 
 

RAP columns (as performed in accordance with Geopier® standards), explore current and past 

research that has explored the mechanisms of their improvement, and discuss any existing design 

models for predicting settlement in RAP treated soil. 

3.2.1 Construction methodology 

RAP columns are similar in nature to SC in that they install high density gravel aggregate 

in a grid pattern to improve the soil matrix. RAPs are constructed using either replacement or 

displacement techniques depending on the soil type which they are improving. This means they 

can be used to reinforce soils ranging from very soft clay and silt, to loose, or dense sand. 

Replacement techniques are similar to what were described in the SC construction section. 

Displacement techniques differ from replacement techniques in that they displace the non-replaced 

existing soil, densifying it in the process.  

Displacement techniques are typically performed with an excavator mounted mobile ram 

base machine fitted with a high frequency (30 to 40 Hz) vibratory hammer as illustrated in Figure 

3.3. The base machine drives a 250 to 300 mm outside diameter open-ended pipe mandrel fitted 

with a unique specially designed 350 to 400 mm diameter beveled tamper foot into the ground. A 

sacrificial cap or internal compaction mechanism prevents soil from entering the tamper foot and 

mandrel during driving. The tamper head includes restrictor elements that form a closed valve 

during downward driving and compaction.  
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 Figure 3.3: A typical RAP vibratory power unit with hopper being 
loaded with granular backfill (http://www.releo.it/blast-test-impact-
pier.php). 

 

After driving to the designed depth, the hollow mandrel serves as a conduit for aggregate 

placement. Placed inside, the aggregate flows to the bottom of the mandrel. The tamper foot and 

mandrel are then raised approximately 0.9 m and then driven back down 0.6 m, forming a 0.3 m-

thick compacted lift as shown in Figure 3.4. Compaction is achieved through static down force 

and dynamic vertical ramming from the hammer. The process densifies aggregate vertically and 

the beveled tamper foot forces aggregate laterally into cavity sidewalls. Crushed gravel (typically 

graded at 20 to 40 mm in particle size) is fed through the mandrel from a top mounted hopper and 

compacted in the displaced cavities to create approximately a 0.5 m diameter, dense, stiff, 

aggregate pier element (Amoroso et al., 2019). The construction methodology has been described 

in detail by Majchrzak et al. (2009) and Saftner et al. (2018).  

 

 

http://www.releo.it/blast-test-impact-pier.php
http://www.releo.it/blast-test-impact-pier.php
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 Figure 3.4: (a) Simplified representation of RAP construction process. 
(b) RAP installation at the Bondeno test site (after Amoroso et al., 2019). 

 

The RAP installation process is designed to densify and increase the lateral earth pressure 

in the surrounding sand while constructing a dense aggregate column. The applied ramming energy 

increases the lateral stress and improves the soil surrounding the cavity left by the driven mandrel. 

Because of the aggregate introduced to the soil matrix from compaction and the significant lateral 

stress increase, the soil matrix is reported to increase the static allowable bearing pressure of 

footings on RAP-treated zones by a factor of two to four times the unreinforced allowable bearing 

pressure (Geopier.com). The benefits of RAP over other types of ground improvement can be large 

cost savings depending on the project. In one case a project owner of a parking garage in 

Washington County, Oregon saved $185,000 in foundation costs, which was greater than 50% of 

the bid price for driven piling (Wissmann et al., 2000).    
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3.2.2 Current state of RAP research 

The principal advantages of RAP relative to SC are still somewhat controversial and are 

not acknowledged universally in the field of ground improvement. Supporters of RAP argue that 

there are several principal advantages: First, increased friction angle of the compacted columns, 

second, the increased lateral pressures generated from the ramming energy input to the aggregate 

to form the bulbs of each lift, and third, the RAP-soil composite stiffness in response to axial load. 

In this section, the current state of the practice for RAP ground improvement will be discussed, 

including well-known benefits of RAP installation, and case histories of their use in liquefaction 

mitigation.  

3.2.2.1 Increased friction angle 

One claimed benefit of RAP is their increased friction angle, with respect to friction angles 

of SC (Geopier.com). Two principal ideas support this claim. First, SC typically use stone that is 

roughly all the same size, since this facilitates the placement of gravel where no pre-drilling will 

occur. On the other hand, RAP use graded stone for maximum compaction. Secondly, the 

construction process for RAP differs from SC and naturally leads to higher friction angles of the 

aggregate material. The crushing of the aggregate which occurs due to ramming leads to denser 

configuration of the aggregate and higher internal friction angles. Fox and Cowell (1998) report 

that average internal friction angles of SC range between 35⁰-52⁰, and 48⁰-52⁰ for RAP. The bounds 

of RAP friction angles are higher and narrower than for SC. 

3.2.2.2 Lateral pressure effect 

Stiff elements that have a high internal friction angle cause high lateral stress development 

in the surrounding matrix soil. As mentioned previously, the ramming action that takes place with 

the beveled tamper in RAP construction causes an increase in the lateral earth pressure in the soil 
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surrounding the column (Wissmann et al., 2001). Wissmann and Fox (2000) report that this lateral 

stress increasingly plays an important role in the deformation characteristics of the RAPs during 

compressive loading. In a scale model test in clayey soil, Demir et al., (2017) found that the degree 

to which lateral earth pressures are increased during RAP construction in clayey soil is related to 

the undrained shear strength of the soil and proximity to the RAP center. Their results from a single 

RAP test are shown in Figure 3.5 in which they found that lateral earth pressures were increased 

by up to four times the in-situ pressures. Figure 3.5 shows that the increased pressures tend to 

dissipate at a distance of approximately 4.5 times the diameter of the RAP from its center. In Figure 

3.5 the computed numerical results are plotted with the red line, and the experimental results are 

shown with the measured blue points. These researchers repeated this test with a triangulated group 

of three RAPs and found, in this case, that the lateral stress increments were 1.7-4.0 times higher 

than in the case of a single RAP.    

 

 Figure 3.5: Decrease of lateral earth pressure with distance from the 
RAP center. The red lines represent the measured lateral stresses in the 
soil matrix (after Demir et al., 2017). 
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 Handy and White (2006) measured the lateral stresses induced near displacement piers 

during their construction at four different test sites. They found that during ramming, transient 

liquefaction can occur in saturated soil near the rammer if the lateral stress exerted by ramming 

exceeds the compressive strength of the soil. The liquefied state allows the ramming strength to 

be transmitted outward with little or no reduction in pressure. The pressures exerted by the ram 

create a plastic condition in the soil, which enlarges the longer ramming continues. Excess pore 

pressures from liquefaction dissipate outward from the plastically deformed area into the elastic 

zone, which allows the transiently liquefied soil to be compacted during ramming of subsequent 

lifts. 

As discussed in section 2.2, improvements to relative density can reduce liquefaction 

susceptibility. The introduction of rigid inclusions, or vibrated sand columns into a loose soil will 

reduce liquefaction potential through improved relative density. A less considered by-product of 

this type of soil improvement is the increase in lateral earth pressure coefficient, K0. It is typical 

when performing a liquefaction analysis, as described in section 2.3, to ignore any explicit 

improvement due to K0 because any increase in K0 is positively correlated with increasing cone tip 

resistance, qc, and relative density, Dr, each of which increase liquefaction resistance.  

A topic of ongoing research is whether the effects of increased K0 increase liquefaction 

resistance independent of its effect on qc and Dr. As of yet, no conclusive analysis has been 

performed to demonstrate that liquefaction correlations are independent of K0. There are, however, 

varying schools of thought on this topic. Some work has demonstrated that increased lateral earth 

pressures reduce liquefaction potential independent of other factors (Harada et al., 2010). Others 

argue that effects of K0 are completely accounted for by the increased cone tip resistance that 

results from RAP installation (Salgado et al., 1997). Their work suggests that it may be important 



www.manaraa.com

42 
 

to consider K0 effects when performing liquefaction potential analysis for any sand deposit that 

has been improved using compactive methods.  

 Ishihara and Takatsu (1979) found from a series of cyclic torsional shear tests that the in-

situ cyclic resistance ratio (CRR) increases with increasing K0 in normally consolidated sands by 

the following relationship 

 𝑅𝑅
𝑅𝑅0

=
1 + 2𝐾𝐾0

1 + 2𝐾𝐾0,𝑁𝑁𝑁𝑁
 (3.5.1) 

where R represents the CRR with the improved K0, R0 is the original CRR, K0 is the improved 

lateral earth pressure coefficient, and K0,NC is the normally consolidated lateral earth pressure 

coefficient.  

 Building upon the work of Ishihara and Takatsu (1979), Salgado et al. (1997) aimed to 

better understand the isolated effects of K0. Traditionally, qc is normalized to qc1, as an intermediate 

step for a number of CPT-based correlations, by considering only the vertical effective stress. To 

isolate the effects of K0 Salgado et al. (1997) normalized qc by the in-situ mean effective stress to 

obtain an equivalent 1D, normally consolidated form, called K0,NC. With the equivalent, 

normalized qc1, a baseline correlation was established between the CRR pre-improvement and the 

normalized K0,NC as shown in Figure 3.6. By establishing this baseline correlation these researchers 

were then able to evaluate the effects of K0 alone on the prevention of liquefaction triggering. 

Figure 3.6 shows that two distinct segment exist along the curves: a flatter, and a steeper portion. 

Over the flatter portion, where qc1 ≤ 12 MPa, the curves shift upwards slightly with increasing 

values of K0, and that for a given value of qc1 the CRR obtained for K0=0.68 and K0=0.90 are at 

most 7 and 14% greater than for K0,NC. Over the steeper portion the curves shift to the right with 

increasing values of K0, by as much as 12 and 18%, for K0=0.68 and K0=0.90, respectively. These 
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findings indicate that over the flatter portion of the curve neglecting the effects of K0 would be 

slightly conservative, where over the steeper portion neglecting the effects of K0 would be 

unconservative (Salgado et al, 1997). 

 

 Figure 3.6: Derived CRR-qc1 curve for K0 = 1.5K0,NC and K0 = 2K0,NC 
(after Salgado et al, 1997). 

 

 The results from Figure 3.6 show the effects of K0 alone. Salgado et al. (1997) also describe 

that overconsolidation (OCR) effects enhance the K0 effects in Figure 3.6. Ignoring the additional 

benefits of OCR on cyclic strength yields conservatism that increases with increasing OCR. For 

deep ground improvement techniques that induce high prestressing (OCR), such as RAP, the 

upward shift of the CRR-qc1 curves could be a significant benefit that is currently unaccounted for 

in design practice. The ability to account for these effects is dependent on further developing 

techniques that reliably determine lateral stresses and stress history in-situ. 

 Harada et al. (2010) continued studying the mitigating effects of K0 against liquefaction. 

Their work centered on observing K0 effects from sand compaction piles, which share similar 
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characteristics with RAP columns. They identified that an increase in liquefaction resistance came 

from increasing penetration resistance, as well as increased K0 values. Isolating the effects of K0, 

they generated a plot showing the relationship between qc1, K0 and CRR, similar to that of Salgado 

et al. (1997). Figure 3.7 shows their findings compared against similar findings by Roberson et al. 

(1998) and the Architectural Institute of Japan (AIJ) (2001). Figure 3.7 shows that as K0 increases, 

so does cyclic resistance, although the curves tend to converged at high qc values. This suggests 

that the effect of K0 tends to decrease in denser soil deposits. Harada et al. (2010) further explained 

that in loose soil deposits, or those with low qc values, the incremental increase of CRR from K0 

is greater than the gradient coming from penetration resistance. On the contrary, in denser soil 

deposits the effect of penetration resistance is more significant than K0. They summarize their 

findings by stating that with increasing K0 the liquefaction resistance increases, but its effect 

becomes smaller at higher density. 

 

 Figure 3.7: Recommended chart correlating corrected qc value and 
liquefaction strength with varying K0 (after Harada et al., 2010). 
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 Increasing lateral earth pressures has therefore been demonstrated to increase liquefaction 

resistance. Salgado et al. (1997) found that for low SPT-N values, doubling K0 from 0.45 to 0.90 

increased liquefaction resistance by 14%, with the rate of improvement lessening with increasing 

SPT-N. Harada et al. (2010) found that K0 was less influential in increasing CPT tip resistance 

than the research by Salgado et al. (1997). Harada et al. (2010) determined that K0 had a larger 

effect on liquefaction resistance than previously believed. They found that in loose soils K0 was 

responsible for 46% of the total increased liquefaction resistance by improving K0 from 0.5 to 1.0. 

The benefits of K0 appear to be limited to loose soils, as density increases it can actually become 

unconservative to include K0 effects. These benefits are substantial, yet they are often neglected in 

current practice because the improvements from penetration resistance are more significant 

(accounting for 50-80% of increased liquefaction resistance). Further exploration of K0 effects 

could lead to significant changes in the design approach of ground improvement techniques. 

3.2.2.3 RAP-soil composite response 

Researchers have attempted to quantify the effects of RAP reinforcement when treated 

soils are subjected loading. Research has been done to investigate composite action under both 

axial and shear loading. To this point, evidence shows real positive effects from axial composite 

action, though many studies have shown that a lack of data exists to support any theory of shear 

strain compatibility.  

Green et al. (2008) studied the shear stiffening effects of RAPs in liquefiable soils using a 

finite element approach. These researchers suggest that one way in which the RAPs mitigate 

liquefaction risk is by redistributing the seismically induced shear stresses from the soil to the RAP 

columns. Smith and Wissmann (2018) report, however, that the level of shear stress reduction in 

the surrounding soil due to in-situ installation of RAPs has not been demonstrated by field data. 
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Smith and Wissmann suggest that it may be possible that the increase in composite shear stiffness 

may be explained by a well-coupled pier-soil response that transfers shear stresses effectively 

across the soil-pier interface (2018). Field tests have shown that some load sharing does occur at 

the RAP-soil interface. 

The hypothesis of shear stiffening has been explored using theoretical studies done using 

equivalent beam analysis (Goughnor and Pestana, 1998), 2D plane-strain finite element (FE) 

analysis (Green et al., 2008), and 3D FE analysis (Olgun and Martin, 2008). These tests have all 

shown that flexure of discrete columns significantly reduces the effectiveness of columns to reduce 

shear stresses in the soil matrix. Centrifuge testing peformed by Rayamahji et al. (2015) also 

demonstrates that columns are ineffective at reducing induced shear stresses during cyclic shaking. 

This is important because shear strain is directly related to pore pressure generation which causes 

liquefaction. 

On the other hand, axial composite action works by principle, since the materials settle 

together, the load received by the soil or RAP, respectively, would be in proportion to the 

material’s stiffness. Demir et al. (2017) measured the load sharing between soil and a single RAP 

in their scale model study. Using pressure plates centered on the RAP and on the surrounding soil 

bed they measured the contact stress on the RAP and the contact stress on the surrounding soil bed 

as load was applied uniformly by a loading plate. The ratio between the recorded stress in the RAP 

and the surrounding soil they labeled the stress ratio. Their results are provided in Figure 3.8 and 

it can be seen that initially the stress concentration ratio spikes to 8.5, yet as the composite material 

continues to settle the stress ratio levels off at about 6.  

Demir et al. (2017) performed the same load tests on a triangulated group of three RAPs. 

They found that the stress concentration ratio in a group to be between 2 and 4 as shown in Figure 
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3.9, or approximately one-half to one-third the stress concentration ratio in the single RAP case. 

In Figure 3.9 the red, green, and black plotted lines represent the measured stress concentration 

ratios in each one of the three test RAPs, respectively. 

 

 Figure 3.8: Stress concentration variation with respect to settlement. The 
stress concentration ratio is the measured stress on the RAP cell divided 
by the measured stress in the cell on the surrounding soil (after Demir et 
al, 2017). 

 

 

 Figure 3.9: Variation of stress concentration with respect to settlement 
for group RAP tests (after Demir et al., 2017). 
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Wissmann et al. (2001) provided evidence for the theory of vertical axial composite action 

during their full-scale modulus load tests of 31 piers throughout the Piedmont region of the United 

States. During their modulus load tests a telltale metal plate was placed at the bottom of each pier 

prior to construction. Two vertical metal bars, encased within PVC pipes to reduce friction 

between the bars and the aggregate, were attached to the metal plate to provide measurements of 

deflection at the bottom of the pier during load tests. A load was then applied at the top of the pier 

through a pressure plate and deflections were measured at both the top and the bottom of the pier.  

The response behavior, or the deflection in response to loading in both the bottom and the 

top plate, to the modulus load tests is shown in  Figure 3.10 (A) and (B), respectively. Figure 3.10 

(A) shows the bulging type behavior observed in a number of the tests. As the pressure applied at 

the top of the pier increases, the difference between the deflection of the top plate and the bottom 

plate grows larger. Since the metal plates at the top and bottom of the pier are constitutively 

equivalent, it can be inferred from the difference in their deflections that the load applied at the 

top of the pier dissipates before reaching the bottom of the pier. The researchers attribute this 

behavior to a bulging behavior of the pier as it expands into the surrounding matrix soil. The 

applied load is then transferred between the RAP and the matrix soil, such that a small percentage 

of the load reaches the base of the pier.  

In contrast, Figure 3.10 (B) illustrates a different behavior, one in which a much larger 

percentage of the load reaches the base of the pier. The load transferred to the base of the pier acts 

first to compress the bottom bulb and then is distributed by end bearing to the soil underneath the 

bulb. The linear deflection prior to the inflection point in either plot represents the settlement of 

the pier before the bulging behavior begins. The steeper portion of the deflection curve after the 

inflection point indicates the bulging of aggregate pier. The vertical difference between the top 
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plate and the bottom plate is indicative of the load transferring that occurs between the RAP and 

the matrix soil. 

In either case (A) or (B) the performance of the soil profile is improved. The bulging 

behavior in case (A), while it leads to increased settlement, is still considered to be an advantage 

of aggregate piers over stiffer inclusions because the bulging behavior acts as a cushion that 

distributes the load among a pier group instead of concentrating it on the most resistant pier within 

the group (Wissman et. al, 2001). In case (B) a larger percentage of the load applied at the top of 

the RAP is transferred to a load bearing stratum at depth. 

 

 Figure 3.10: A) Bulging behavior. The matrix soil carries much of the 
load, thus the telltale plate at the bottom of the pier experiences little 
deflection, B) Tip stress behavior. A significant portion of the load 
applied to the RAP reaches the bottom bulb (after Wissmann et al, 2001). 
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3.2.2.4 RAP for liquefaction mitigation 

RAP elements have been used on projects around the world for liquefaction mitigation. 

Their effectiveness in mitigating liquefaction in clean sandy soils has been well documented. 

Extensive research was performed in Christchurch, New Zealand, following the Canterbury 

Earthquake Sequence in 2010-2011 (Wissmann et al., 2015; Vautherin et al., 2017; Amoroso et 

al., 2018). Takeaways from these research studies show that RAPs are effective at mitigating 

liquefaction potential through densification in soils with a soil behavior index, Ic, < 1.8. Several 

experimental and constructed case histories, however, provide evidence that RAP provide more 

liquefaction protection than from densification alone.  

In Ecuador, for instance, an interesting case study was performed after the Muisne 

earthquake (MW 7.8) of 2016. Major damages occurred during this earthquake to the embankments 

of the Mejia bridge, which experienced measured peak ground accelerations of 0.32g. The 

embankments of this bridge were placed on unsupported soil consisting of loose to medium dense 

silty and clayey sands. Meanwhile, the embankments of the nearby Boca de Briceño bridge 

experienced higher peak ground accelerations of 0.38, yet suffered only minor and easily 

repairable damages. The Boca de Briceño bridge is supported on soil similar to the Mejia bridge, 

but is RAP treated. Evidence of liquefaction was present at both the Mejia bridge, and the Boca de 

Briceño bridge outside of the footprint of the RAP treated area. Liquefaction susceptibility 

analyses for the Boca de Briceño bridge embankment showed that the site should have been 

susceptible both before and after RAP installation, yet there was no evidence of liquefaction in the 

RAP treated zone (Smith and Wissmann, 2018). This case history suggests that the combined 

benefits of increased confinement and increased densification were not the only mechanisms of 

improvement provided by the RAP in this event. 
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Another case study was performed during the Christchurch testing program in New 

Zealand. Wissmann et al. (2015) report that large-strain T-Rex testing showed that the composite 

reinforced ground exhibited shear stiffness values greater than the unimproved soil by a factor of 

3 to 5. The results of this test suggest that RAP improve liquefaction resistance by an increase in 

shear stiffness response of the reinforced ground.  

3.2.3 Existing RAP settlement design models 

In practice, a number of methods have been used to estimate settlements of soil profiles 

treated with rigid inclusions. Several settlement models in use for RAP are also used for SC 

profiles. Existing settlement methods have been covered well by Özgür (2008) and the interested 

reader may see his work for a comprehensive discussion of these methods. 

In practice, finite-element models are most widely used for predicting RAP settlements. 

However, one simple procedure which will be discussed in this literature review is the subgrade 

modulus approach suggested by Lawton and Fox (1994). They suggest that when design engineers 

plan for settlements in RAP treated soil, the settlements should be considered in two distinct zones. 

The first is the upper zone, or the zone of matrix soil reinforced by the aggregate piers. The second, 

or lower zone, is the zone beneath the RAP group that is subjected to compression due to footing 

stresses at the tip of the piers. Within the upper zone, settlements have been computed in the past 

based on a spring analogy. By this method the footing is assumed to be perfectly rigid relative to 

the foundation materials. Hence, the stress applied to the composite foundation materials (RAP 

pier and soil) depend on their relative stiffness (Rs), as mentioned in section 3.2.2.3, and area 

coverage. The total downward force (Q) on the footing is resisted by a total upward force in the 

RAP (Qg) and soil (Qs) as shown in the following equation: 
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 𝑄𝑄 = 𝑞𝑞𝑞𝑞 = 𝑄𝑄𝑔𝑔 + 𝑄𝑄𝑠𝑠 = 𝑞𝑞𝑔𝑔𝐴𝐴𝑔𝑔 + 𝑞𝑞𝑠𝑠𝐴𝐴𝑠𝑠 (3.2.3.1) 

where qg is the stress at the top of RAP elements beneath the footing, and Ag is the area of the pier 

elements below the footing, qs and As are the stress in the soil matrix below the footing, and the 

area of soil below the footing, respectively. 

 Since the footing is essentially rigid compared to the bearing materials, the settlement of 

the pier will equal the settlement of the matrix soil. The settlement of the foundation (s) can be 

written in terms of RAP stress and RAP stiffness modulus (kg) or in terms of the matrix soil stress 

and matrix soil stiffness modulus (ks): 

 𝑠𝑠 =
𝑞𝑞𝑔𝑔
𝑘𝑘𝑔𝑔

=
𝑞𝑞𝑠𝑠
𝑘𝑘𝑠𝑠

 (3.2.3.2) 

Equation 3.5.3.2 can be rewritten to express the matrix soil stress in terms of the aggregate pier 

stress and the ratio of the pier and matrix soil modulus values (Rs): 

 
𝑞𝑞𝑠𝑠 = 𝑞𝑞𝑔𝑔 �

𝑘𝑘𝑠𝑠
𝑘𝑘𝑔𝑔
� =

𝑞𝑞𝑔𝑔
𝑘𝑘𝑔𝑔
𝑘𝑘𝑠𝑠

= 𝑞𝑞𝑔𝑔/𝑅𝑅𝑠𝑠 
(3.2.3.3) 

Combining Equations 3.5.3.1 and 3.5.3.3 and defining area ratio (Ra) as the ratio of Ag to A:  

 
𝑞𝑞 =

𝑞𝑞𝑔𝑔𝐴𝐴𝑔𝑔
𝐴𝐴

+
𝑞𝑞𝑔𝑔𝐴𝐴𝑠𝑠
𝐴𝐴𝑅𝑅𝑠𝑠

= 𝑞𝑞𝑔𝑔𝑅𝑅𝑎𝑎 +
𝑞𝑞𝑔𝑔(1 − 𝑅𝑅𝑎𝑎)

𝑅𝑅𝑠𝑠
= 𝑞𝑞𝑔𝑔 �𝑅𝑅𝑎𝑎 +

1
𝑅𝑅𝑠𝑠
−
𝑅𝑅𝑎𝑎
𝑅𝑅𝑠𝑠
�

=
𝑞𝑞𝑔𝑔[𝑅𝑅𝑎𝑎𝑅𝑅𝑠𝑠 + 1 − 𝑅𝑅𝑎𝑎]

𝑅𝑅𝑠𝑠
 

(3.2.3.4) 

Rewriting qg in terms of q: 

 𝑞𝑞𝑔𝑔 =
𝑞𝑞𝑅𝑅𝑠𝑠

𝑅𝑅𝑎𝑎𝑅𝑅𝑠𝑠 + 1 − 𝑅𝑅𝑎𝑎
 (3.2.3.5) 

Settlements in the upper zone are then computed using Equations 3.2.3.2 and 3.2.3.5, which 

depend on the applied composite footing stress, the relative stiffness of the aggregate pier and soil 
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materials, the area ratio of the aggregate pier elements, and the aggregate pier stiffness modulus 

(Lawton and Fox, 1994; Lawton et al., 1994).  

 Settlements in the lower zone can be estimated using conventional geotechnical settlement 

analysis procedures (Terzaghi and Peck, 1967; Das, 2014).  

3.2.4 Knowledge gaps relative to RAP treatment for liquefaction hazard mitigation 

To this point, the present state of RAP research has been examined. The results of practical 

performance, as well as full-scale tests have demonstrated that RAPs improve axial stiffness in 

sandy and silty soils. The quantitative data of these case histories indicate that the level of 

improved performance cannot be accounted for by densification alone. Researchers have shown 

that the additional improvement can be accounted for by increased densification. It has been 

hypothesized that further improvement must be considered as a result of increased lateral stresses, 

however, these claims remain to be fully validated. 

The literature demonstrates that further study of RAP improvement is necessary to better 

understand their effectiveness in soils with higher fines content, namely, is it possible to improve 

soils with Ic > 2.3. As shown in other studies, the ability to improve these soil types would be 

advantageous over other vibratory methods. In addition, there is a lack of consensus over whether 

the effects of increased K0 reduce ground settlements from liquefaction. These effects require 

further examination. Finally, this thesis will aim to develop a predictive settlement model that can 

be used reliably for design purposes in silty sand soils. 

The liquefiable target layers at the test site in Bondeno contain higher fines content than 

other aforementioned tests conducted on RAP columns. This experiment will further investigate 



www.manaraa.com

54 
 

the influence of soil densification, increased lateral earth pressures and increased profile stiffness 

from composite action on liquefaction resistance. 
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4 PRELIMINARY INVESTIGATIONS AND SITE CHARACTERIZATION 

4.1 Geotechnical conditions 

To locate a site for the field tests, INGV, a research team from the University of Bologna 

(UNIBO), and local geologist Luca Minarelli performed geologic investigations within 15 km of 

a site in Mirabello (Italy) where a similar blast test was performed in 2016 to measure liquefaction-

induced downdrag on micropiles (Amoroso et al., 2017). The selection of the test site was chosen 

with respect to the 2012 Emilia Romagna seismic sequence that resulted in observable liquefaction 

across the region. The moment magnitudes of the earthquakes were 6.1 occurring on May 20, 2012 

and 5.9 on the 29th of the same month (ISIDe working group 2016). The selected test site is located 

15 km to the northeast, and 24 km to the northeast of the epicenters of these respective earthquakes 

(Pondrelli et al., 2012). The eventual test site was selected from among several locations where 

physical evidences of liquefaction were found (Emergeo Working Group, 2013). In addition, a soil 

profile with moderate fines content with low plasticity was desired to evaluate RAP effectiveness 

in these soils.   

 After considering an acceptable limit of vibrations for human perception and building 

damage (PPC & PPV), a site located on agricultural land was chosen near Bondeno situated in 

Emilia-Romagna region of Italy (anals). The site particularly satisfied the requirements for 
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liquefaction potential since sand boils and sand-filled cracks were observed shortly after the 2012 

earthquake (Anals and Obs). Sand boils and sand cracks are a result of increased pore pressure 

below ground. When a saturated sand layer liquefies, the excess pore pressure causes the water to 

push through cracks often taking sand sediment with it as it moves to the surface. Due to the well 

documented observance in the area, the test site was deemed a reliable location to perform the full-

scale experiment.  

According to geologic journals the location of the test site outside of Bondeno, Italy, was 

formed by naturally accumulated Holocene and late Pleistocene Age sediments deposited by the 

Po river (Regione Emilia-Romagna 1998).  The in-situ investigations found that the silty sand 

layers from 3.5 to 12.6 m consists of Holocene alluvial deposits in a paleo channel of the Po river, 

while the deeper sand and silty sand layers are late Pleistocene glacial braided Po river deposits. 

Several generations of fluvial channel deposits, fed from the south by the Appenine streams, and 

from the west by the Po river appear at the outcrop of the younger soil unit (Amoroso et al., 2019). 

Following site selection, the subsoil profile of the test site was characterized by INGV and 

UNIBO by a thorough review of geologic records, as well as by geo-testing methods. Cone 

penetration tests, standard penetration tests, geophysical tests, disturbed sampling, downhole 

characterizations, trenches and dilatometer testing were utilized along with historical data to create 

an accurate profile at the site (Amoroso et al., 2019). Invasive and non-invasive tests were 

performed by UNIBO and GEO before and after ground-improvement, and before and after 

blasting to observe the respective variations in the physical properties of the soil from each activity. 

The pre-improvement in-situ site investigations are shown in Figure 4.1, and comprehensively 

consisted of two boreholes, one 15 m deep borehole in the improved panel, and one 7.1 m borehole 
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in the natural panel. Six SPTs were performed within the borehole in the improved panel. No SPTs 

were performed within the borehole in the natural panel.  

Two undisturbed samples were obtained by from the natural panel with a Shelby tube 

sampler for static and cyclic laboratory tests by UNIBO. Six disturbed samples from the natural 

panel, and 14 disturbed samples from the improved panel were also obtained for grain size 

distribution analyses, Atterberg limits, petrographic analyses and radiocarbon dating. Piezocone 

(CPTU) and seismic dilatometer (SDMT) tests were also performed in both the natural panel and 

the improved panel 15-20 m deep.  

Geophysical tests were performed by INGV prior to improvement consisted of: five 

electrical resistivity tomography (ERT) lines crossing both IP and NP, 63 m long, spaced at 2 to 5 

m (P1A-P1B, P2A-P2B, P3A-P3B, P4A-P4B, P5A-P5B); one active P-wave and S-wave 

tomography, 71 m long with 72 P-wave and S-wave geophones per line; and one passive 2D-

rectangular array of 72 P-wave geophones spaced at 3 m, and centered in IP. 

As shown in Figure 4.2, the profile consists of a surface layer composed of silty clay and 

clay (CL) to a depth of 3.5 m, underlain by silty sand (SM) to a depth of 12.6 m, which is in turn 

underlain by sands and silty sands (SP-SM). The topsoil consists of an agriculturally worked 

mixture of liquefied sand extrusions and silty-clayey fines down to 0.8 m below the surface. The 

Ravenna Subsynthem contains clays and silts (0.8-3.4m) overlaying a silty sand (3.4-12.6m), a 

sandy silt (12.6-13.6m) and sands and silty sands (13.6-15.6m). The highest fines content (D < 

0.075 mm) of the soil profile came within the silty layer between 2-3.4 m depth and was between 

75 and 93%. The range of fines content beneath this layer was typically between 20 and 40% 

(Amoroso et al., 2019).  
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Figure 4.1: Map of the in-situ site investigations performed prior to RAP installation and blast-testing. 
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 Figure 4.2: Simplified soil profile of the test site in Bondeno, Italy (after 
Amoroso et. al, 2019). 

 

The results from the CPTu and SDMT in-situ testing at the natural panel (NP) and 

improved panel (IP) before RAP installation (pre-treatment) were plotted by our BYU research 

team and are shown in Figure 4.3 and Figure 4.4, respectively.  Both surveys indicate that, 

generally speaking, the profile consists of a surface layer composed of silty clay and clay (CL) to 

a depth of 3.5 m, underlain by silty sand (SM) to a depth of 12.6 m, which is in turn underlain by 

sands and silty sands (SP-SM). Past geological investigations found that the silty sand layers from 

3.5 to 12.6 m consist of Holocene alluvial deposits in a paleo channel of the Po river, while the 

deeper sand and silty sand layers are late Pleistocene glacial braided Po river deposits (Regione 

Emilia-Romagna 1998, Amoroso et al., 2019). The parameters obtained from the CPTu as shown 

in Figure 4.3 are very similar for the NP and IP sites. Figure 4.4 also shows that the SDMT survey 
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of the two profiles show good agreement, with some minor variations in constrained modulus, M, 

and horizontal stress index, KD. The fines contents were estimated using a correlation proposed by 

Robertson & Wride (1988). However, laboratory measured fines contents in the sand layers are 

typically between 20 and 40% and are considerably higher than interpreted from the correlation.   

Our BYU research team plotted the CPTu data from the IP with depth on the normalized 

soil behavior type chart (see explanation in section 2.5 of this work) in Figure 4.5 (Robertson, 

1990). Figure 4.5 clearly depicts the distinct stratification of the profile into two primary layers. 

Between 0-3 m depth the profile behaviorally consists of clayey and silty soil with Ic > 2.6. Recall 

that for liquefaction assessment per Robertson and Wride (1998) soils with Ic ≥ 2.6 are considered 

non-liquefiable. Beyond 3 m depth the profile consists of sands and sandy mixtures with Ic < 2.6. 

This stark division of soil layers greatly facilitated the liquefaction assessment in this study. 

 

 Figure 4.3: (a) Interpreted soil profile and comparisons of CPTu test 
results at the Natural Panel (NP) and the Improved Panel (IP) prior to 
RAP treatment with respect to (b) cone resistance, qt, (c) sleeve friction, 
fs, (d) porewater pressure, U2, (e) soil behavior type, Ic, and (f) ratio of 
constrained modulus to cone tip resistance M/qt. 
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 Figure 4.4: (a) Interpreted soil profile and comparisons of SDMT test 
results at the Natural Panel (NP) and the Improved Panel (IP) prior to 
RAP treatment with respect to (b) soil material index, ID, (c) constrained 
modulus, M, (d) fines content, FC (e) horizontal stress index, KD, and (f) 
shear wave velocity, Vs. 

 

 

 Figure 4.5: Soil behavior type plot consisting of CPTu data from a 
sounding in the IP prior to treatment. 
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4.2 Liquefaction assessment 

Researchers from the University of Bologna (UNIBO) used piezocone test data to 

determine liquefaction susceptibility at the test site. By applying the well-established CPTU-based 

procedure proposed by Idriss and Boulanger (2008), a liquefaction susceptibility analysis was 

performed for a moment magnitude Mw = 6.14 (Meletti et al., 2008) and peak ground acceleration 

amax = 0.22g (Stucchi et al., 2011). These values correspond to values used in ongoing seismic 

microzonation studies of the Bondeno municipality. The ground water table (GWT), which 

seasonally fluctuates between 0.5 and 1.5 m, was assumed at a worst-case depth of 0.5 m for the 

design ground motion. Based on this analysis, the researchers identified a potential liquefiable 

layer from 3 to 8 m in depth (Amoroso et al, 2019). The UNIBO researchers determined that the 

site yielded a high risk for liquefaction especially for the thick layer of saturated apenninic deposits 

between 6 and 8 m which confirmed the prior observations from the 2012 seismic event.  

In this study, our BYU research team also performed an additional liquefaction potential 

assessment using the Idriss and Boulanger (2008) CPTu method, with the same earthquake 

magnitude and acceleration as the researchers from UNIBO. This was done in order to verify the 

UNIBO results. This assessment was done using CLiq V. 3.0, a commercial liquefaction program 

developed by GeoLogismiki, in collaboration with Gregg Drilling and Professor Peter Robertson. 

Our resulting analysis also showed that the layer between 3 to 8 m depth was expected liquefy for 

the given earthquake and ground acceleration. The CSR and CRR are each plotted with depth in 

the pre-treated soil in Figure 4.6 (a). Areas where the CSR exceeds the CRR are zones of FSL<1.0 

and potentially liquefiable when subjected to the given earthquake parameters. The FSL is plotted 

with depth through the pre-treated soil profile in Figure 4.6 (b). This figure confirms the work of 

the UNIBO researchers and identifies the target zone of susceptibility between 3 and 8 m depth.  
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Using the computed FSL from Figure 4.6 we estimated the predicted settlement using the 

volumetric strain approach proposed by Ishihara and Yoshimine (1992). This method is the 

precursor to the integrated CPT approach by Zhang et al. (2002) which predictive settlement will 

be shown in Chapter 8 of this work. The Ishihara and Yoshimine (1992) method requires both Dr 

and FSL as inputs to estimate volumetric strain as shown by Figure 2.6. We used different pairs of 

Dr and FSL to obtain a range of anticipated settlement values. Relative density was approximated 

using both the Jamiolkowski (2003) and the Tatsuoka (1990) approaches. In addition to the FSL 

computed in Figure 4.6 constant values of FSL = 1.0 and FSL = 0.93 were also evaluated between 

the depths of 3-11 m. The results of these settlement approximations are shown in Figure 4.7. 

 

 Figure 4.6: (a) Cyclic stress ratio (CSR) and cyclic resistance ratio 
(CRR), (b) Factor of safety against liquefaction in the natural soil. 
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 Figure 4.7: Predictive settlement for the design earthquake using the 
Ishihara and Yoshimine (1992) settlement approach with pairs of Dr 
(computed by Jamiolkowski [2003] and Tatsuoka [1990]) and FSL 
(computed by Idriss and Boulanger [2008] or using fixed FSL). 
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5 GROUND IMPROVEMENT PROCEDURE 

5.1 Construction of RAP columns 

RAP construction at the test site was performed by Releo, a licensed local affiliate of 

Geopier®, carried out in accordance with the procedure described in section 3.2.1. This section 

describes the details of the actual construction performed at the test site. Prior to RAP installation, 

a 0.5-m thick working platform was constructed over the site to facilitate transit of the construction 

equipment over the clayey surface layer. The working platform consisted of sandy gravel with 

some construction debris. Figure 5.1 is an aerial photograph taken of the test site during RAP 

construction and shows the ramming hammer on a track-mounted RAP column installer, with its 

hopper being loaded with granular backfill. The working platform is the lighter colored soil and 

was removed before the test date. 

Over a three-day period between the end of March and the beginning of April 2018, a 4x4 

quadrangular grid (2 m center-to-center spacing) of RAP columns was installed to a depth of 

approximately 9.5 m. This depth was chosen because the anticipated liquefiable layer was between 

3 and 8 m, as described in section 4.2. The pier diameter was 0.5 m with an associated area 

replacement ratio, defined as the ratio of the pier area to the tributary soil area surrounding the 

pier, equal to 5%. Ten RAPs were subjected to flow rate tests and crowd stabilization tests for a 

quality control of the ground improvement work. The results of the crowd stabilization tests of the 

16 piers is provided in Table 5.1.  
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 Figure 5.1: (Left) Aerial photograph at the Bondeno test site showing the 
track mounted ramming hammer with a hopper being loaded with gravel 
aggregate. (Right) Photo of a typical hopper and mandrel being compacted 
by the vibratory power unit (http://www.releo.it/blast-test-impact-
pier.php). 

 

The pier number in Table 5.1 corresponds to the order in which the pier was installed. The 

order number of installation of the piers is shown in Figure 5.2. The first three installed piers (1, 2 

and 3) were placed on the northeast end of the improved area. The crowd tests results of these piers 

from Table 5.1 show that settlement during the crowd test was much higher on piers 1, 2 and 3 

than for the latter installed piers. The larger crowd test settlements are attributable to the 

inconsistencies during construction. It appears that the quality of RAP construction improved as 

the crew practiced and became familiar with the site, since crowd test settlements become more 

consistent and lessen with time.

http://www.releo.it/blast-test-impact-pier.php
http://www.releo.it/blast-test-impact-pier.php
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Table 5.1: Summary of RAP installation details and crowd test results for each pier. 
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Figure 5.2: Order and placement of RAP installation corresponding to Table 5.1. 
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5.2 Post-RAP ground improvement evaluation 

At the end of April 2018 supplementary geotechnical tests were carried out by UNIBO in 

the middle of four piers to quantify the improvement. The location of these tests are shown in 

Figure 5.3 namely CPTU01bis (15 m deep), MEDUSA DMT01bis (from a depth of 5 to 11 m) and 

SDMT 01bis (15 m deep), to evaluate the RAP effectiveness one month after the construction. At 

the beginning of May 2018 the working platform was removed to allow the geophysical surveys 

that were performed prior to ground improvement to be repeated. The pre-improvement plots are 

from one seismic dilatometer SDMT01_I, performed to 11.4 m depth, and the post-improvement 

characteristics are plotted from two tests: seismic dilatometer SDMT01bis_I, performed between 

0 m and 4.8 m depth, and medusa dilatometer MDMT01bis_I, performed between 4.6 m and 11.2 

m depth. 

The CPTu and DMT test results were plotted by our BYU research team and are shown in 

Figure 5.4 and Figure 5.5. These figures summarize the profiles with depth after RAP installation 

from the post-improvement CPTu and SDMT surveys. Figure 5.4 shows the improvement in terms 

of the corrected cone tip resistance qt, cone sleeve friction, fs, relative density, Dr, soil friction 

angle, ϕ, and ratio of constrained modulus to cone tip resistance, M/qt. The constrained modulus, 

M, is inversely proportional to settlement and generally increases with increasing density and the 

confinement provided by the RAP grid. Figure 5.5 shows the improvement in terms of the 

constrained modulus, M, lateral earth pressure coefficient KD, at rest lateral earth pressure 

coefficient, K0, and shear wave velocity Vs.



www.manaraa.com

70 
 

 

Figure 5.3: Map of the in-situ site investigations performed after RAP installation and prior to blast-testing. 
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As anticipated, little to no improvement occurred from RAP installment in the clay layer 

between 0 m and 3 m depth. Between the depths of 4 and 9.5 m the corrected cone tip resistance, 

sleeve friction, were significantly improved. The relative density, which we computed using a 

correlation with CPT cone resistance (Jamiolkowski et al., 2003), also shows moderate 

improvement in this region. The Jamiolkowsi et al. (2003) relative density equation is provided 

below: 

 𝐷𝐷𝑟𝑟 = 𝐴𝐴′0 + 𝐵𝐵0ln (
𝑞𝑞𝑐𝑐

�𝜎𝜎′𝑚𝑚𝑚𝑚
) (5.2.1) 

Where A’0 and B0 are constants dependent on soil type, and σ’m0 is the mean effective stress. The 

layer of soil between 3-8 m depth was called the target zone due to its susceptibility to liquefaction, 

as the FSL was less than 1 in this zone. Within the target zone (3-8 m depth) we attained a relative 

density of 75%, which is comparable to other deep foundation improvement techniques, as 

discussed in chapter 3.  M, KD, and K0 also experienced large improvement which is consistent 

with expectations based on the installation process. The constrained modulus, M, is a telling 

parameter as it is inversely related to settlement. Between 4-8 m depth the average percent 

improvement to M was 25%. The dilatometer test results in Figure 5.5 clearly show that soil 

parameters representing in-situ lateral earth pressures were dramatically increased, within some 

layers by as much as 100%. Between 3-8 m the average KD was improved from 7.6 to 10.9, where 

the average K0 was improved from 1.1 to 1.4 within the same zone. For both parameters the layer 

between 4-5 m depth saw the least improvement. It is possible that this is due to the higher 

percentage of fines in this layer. This layer also plotted within the sandy mixtures on the soil 

behavior type (SBT) chart, indicating that the soil behavior was more towards silt than sand. The 
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VS profiles show a smaller increase after treatment within the same depths of interest.  This is to 

be expected because Vs is less affected by increases in density and lateral earth pressure.  

We plotted the post-RAP profile again on Dr. Robertson’s soil behavior type chart shown 

in Figure 5.6. It can be seen that the distinct layers have remained, however, several interesting 

changes are present. First, there are fewer data points that plot within the sand-mixture category 

of group 5. It appears that the improvement caused some of these data points to move into group 

4, indicating sand. Secondly, the spread of the data pairs in group 4 is wider than the pre-improved 

state. Many data points plot to the left of the normally consolidated (NC) window, indicating 

increasing sensitivity. Some of the data pairs plot to the right of the NC window, indicating 

increasing overconsolidation, or increased lateral earth pressures. From this record it appears that 

RAP installation may have caused similar behavior to that observed by Rollins et al (2012), where 

some layers experienced increased lateral earth pressures, while other layers experienced reduced 

horizontal stresses. Finally, it appears that the surficial clay layer experienced increasing 

overconsolidation, meaning that RAP were effective at increasing lateral earth pressure in the clay. 

As part of this study, our BYU research team also performed the same liquefaction 

potential assessment on the post-improved soil. Using the same input parameters and the Idriss 

and Boulanger (2008) approach, as given in section 4.2 (Mw=6.12 and amax=0.22g), the liquefaction 

potential was computed and is plotted with depth in Figure 5.7 (a). Prior to improvement the FSL 

was less than one throughout the 3-8 m depth. After improvement the FSL was increased above 

one for all but the layer between 4.5-5.5 m, within which the magnitude of improvement was 

lessened due Ic values greater than two. Figure 5.7 (b) shows that the ratio of liquefaction potential 

of the post-RAP to pre-RAP was between one and two, with an average increase of 43% within 

this zone. 
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 Figure 5.4: (a) Interpreted soil profile and comparisons of effects of RAP 
improvement as measured by CPTu test results with respect to (b) cone 
resistance, qt, (c) sleeve friction, fs, (d) relative density, Dr, (e) soil friction 
angle, ϕ, and (f) ratio of constrained modulus to cone tip resistance M/qt. 

 

 

 Figure 5.5: (a) Interpreted soil profile and comparisons of effects of RAP 
improvement as measured by SDMT test results with respect to (b) 
constrained modulus, M, (c) horizontal stress index, KD, (d) at rest earth 
pressure coefficient, K0, and (e) shear wave velocity, Vs. 
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 Figure 5.6: Soil behavior type plot consisting of CPTu data from a sounding 
in the IP after treatment. 

 

 We also computed the FSL for both the pre-RAP and post-RAP profiles using a larger 

earthquake magnitude and peak ground acceleration. We did this, firstly, because predicting the 

size of a blast large enough to produce liquefaction is difficult to do; and secondly, to quantify the 

effects of RAP improvement in the event of a larger seismic event. Our research team also wanted 

to evaluate whether the relationship between the FSL pre- and post-improvement would change 

with increasing earthquake intensity. Thus, we performed the assessment again using a MW=7.5 

and amax=0.3. Figure 5.8 shows that the RAP improved soil would have outperformed the untreated 

soil between 6 and 8.5 m depth. It is clear from Figure 5.8 (a), however, that given the larger 

earthquake the treated soil would likely not have prevented liquefaction outside of the 6 to 8.5 m 

range. Figure 5.8 (b) shows that the relationship of the post-pre improvement ratio did not change 

drastically with the increasing magnitude of the design ground motions. From this we can infer 

that if the blast charges do cause a ground motion that significantly differs from the design motion, 

the ratio of the effects should be the same between the pre- and post-RAP treated soil profiles. 
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 Figure 5.7: (a) Factor of safety against liquefaction pre- and post-RAP 
improvement, (b) ratio of post-RAP/pre-RAP FSL, assuming MW=6.14, 
amax=0.22 g. 

 

 

 Figure 5.8: (a) Factor of safety against liquefaction pre- and post-RAP 
improvement, (b) ratio of post-RAP/pre-RAP FSL, assuming MW=7.5, 
amax=0.3 g. 
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6 BLAST TEST PROCEDURE AND SITE INSTRUMENTATION 

6.1 Explosives setup and blast procedure 

Liquefaction was induced using a blasting procedure that had previously been shown to 

successfully produce liquefaction for full-scale foundation testing (Gohl et al., 2001; Finn, 2001; 

Ashford et al., 2004; Ishimwe, 2018; Amoroso et al., 2018). Previous tests have shown that blast 

induced liquefaction can be used to evaluate performance of deep foundation and ground 

improvement systems over large areas and at significant depths (Ashford et al., 2000; Ashour and 

Norris, 2003; Ashford et al., 2004; Rollins, 2004; Rollins and Strand, 2006; Strand, 2008; Rollins 

and Hollenbaugh, 2015; Stuedlein et al., 2016; Amoroso et al., 2017; Amoroso et al., 2018). Blast-

induced liquefaction can also produce settlements similar to those observed from liquefaction 

induced by earthquakes (Amoroso et. al, 2019).  

One limitation of this approach is that the mechanisms of pore pressure generation are not 

identical to those in earthquakes. In an earthquake event, the porewater pressure is increased slowly 

as shear waves propagate vertically through the soil. By contrast, during blasting the porewater 

pressure is increased by a combination of compression and shear waves generated by the 

explosion. Blasting produces higher ground accelerations and higher frequency ground motions 

than an earthquake, yet the velocity and strain levels are comparable (Ashford et al, 2004).  
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To give relevancy to the test data, we performed tests around the natural panel and the 

improved panel with identical blast charge weights and detonation sequences.  Blast holes were 

drilled up to 7 m deep by GEO to place charges at two different levels (or decks) within the 

liquefiable layer: 0.5 kg at 3.5 m and 2.0 kg at 6.5 m as shown in Figure 6.1.  Each blast hole was 

cased with a 75 mm diameter PVC pipe.  Each charge was buried inside the PVC pipe with sand 

backfill (stemming) and topped off with sandbags to direct the blasting forces radially into the 

surrounding soil at depth, rather than vertically upward through the blast pipe. For each panel eight 

blast holes were equally distributed around a 5 m-radius ring at 45° intervals, considering that the 

center-to-center distance of the two panels is approximately 20 m. The blasts of the two panels 

were conducted separately (i.e. blast 1 for the NP and blast 2 for the IP) to limit effects of 

superposition and simplify the comparison of the effects of the blast induced liquefaction on the 

IP and the NP, separately.  

The explosive charges were detonated sequentially at one second intervals with detonation 

of the bottom charge followed by the upper charge in each blast hole. The sequence of blasting 

was the same for both the NP and the IP, and is indicated by the blast hole number shown in Figure 

6.2 with blast hole alternating from opposite sides of the ring. Explosives were installed on the day 

of the blast (June 4, 2018) for safety reasons. 

The perimeter of the circle formed by the blast holes is considered the blast circle as often 

mentioned in this report. However, liquefaction and associated settlements extended beyond the 

blast rings. Liquefaction was recorded by the furthest accelerometers at our test site, which were 
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located midway between the two blast rings at 12 m from the blast center. We anticipated that the 

blast forces would be the largest nearest the blast holes. We also expected that the cyclic forces 

would be the greatest at the center of the blast circle with an equidistance to the surrounding blast 

holes assuming uniformity in the soil stratigraphy. As the distance increases from the blast center 

and blast zone we expect that the forces from blasting dissipate.   

The blasts of the two panels were designed separately by INGV (i.e. blast 1 for the NP and 

blast 2 for the IP) to limit effects of superposition and simplify the comparison of the effects of the 

blast induced liquefaction on the IP and the NP, separately. The first blast test occurred on June 4, 

2018 at 12:16:43 and the second blast occurred at 15:20:41 the same day (as recorded by Dave 

Anderson, the Civil Engineering lab manager at Brigham Young University).  

 

 

 Figure 6.1: Blue PVC pipe with cap where charges were lowered to the 
appropriate depths (modified after Lusvardi, 2019). 
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Figure 6.2: Blast hole placement in the IP with respect to the RAP columns. 
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6.2 Pore pressure instrumentation layout 

Our BYU research team, together with GEO Geotecnica e Geognostica, installed pore 

pressure transducers (PPT) from 4 to 9 m at each meter of depth, within the liquefiable layer (1 or 

2 m distance from the center of each panel).  The PPTs obtained readings at a 100 Hz sampling 

rate and were used to measure the generation, and subsequent dissipation, of the excess pore 

pressures induced by the blasts at discrete depths within each of the panels. We set an extra PPT 

at a depth of 4 m near the middle of an accelerometer array mid-way between the two blast rings 

to study the non-linear soil behavior induced by the blast-liquefaction, coupling the shear strains 

with the excess pore pressures. Pore pressure data was necessary because the calculation of the 

excess pore pressure ratio (ru), defined as the excess pore pressure (Δu) divided by the initial 

vertical effective stress (σ’vo), can help determine if the soil layer has been liquefied. We installed 

the PPTs using the procedure described by Rollins et al. (2005), as follows. Six pore pressure 

transducers were placed around each center profilometer at depths of 4, 5, 6, 7, 8 and 9 m as shown 

in Figure 6.4. One PPT was placed at the center of the test field to observe pore pressures at a 

distance from the blast energy.  

The transducers were housed in a protective cone-shaped casing to prevent damage to the 

fragile measurement diaphragm. We drilled holes into the cone tip before installation to allow 

pressure to easily reach the transducer. A rubber membrane was used when inserting the transducer 

into the bentonite slurry filled borehole to prevent any material of clogging the holes in the casing. 
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Amoroso et al. (2018) reported that the use of the rubber membrane did not prevent all instrument 

error due to clogging. In order to remedy this, we forced cotton into the drill holes in the casing. 

The pressure was still able to reach the membrane through the cotton, which provided a filter 

against clogging. Each PPT was installed by drilling a borehole filled with bentonite slurry to a 

depth 0.3 m above the intended PPT depth.  Once the bottom of the borehole was reached, we 

pushed the PPT about 0.3 m which placed the transducer in the native soil as well as breaking the 

rubber membrane to allow the pressures to access the transducer. We kept each transducer 

connected to the computer program LabView throughout the duration of the blast activities Figure 

6.3 below shows the typical installation diagram for the pore pressure transducers. 

 

 

 Figure 6.3: Typical PPT configuration showing the encapsulated PPT being 
placed at depth within a borehole encased with bentonite slurry (Modified 
after Lusvardi, 2019). 
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We selected the depths of the pore pressure transducers to attempt to quantify the pore 

pressures throughout the potentially liquefiable layers. Using measurements provided from two 

flat dilatometer test (DMT, Test: SDMT01_I, SDMT11_N) the following vertical effective stresses 

were determined for the various depths of the pore pressure transducers (PPT). The information 

gathered from the test is shown in Table 6.1 below. A plan view of the PPT placement in the NP 

and IP is provided in Figure 6.4. 

 Table 6.1: Initial vertical effective stress readings at each pore pressure 
transducer, in the NP and the IP, that were used in the  

computation of ru during blast activities. 
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Figure 6.4: Plan view of PPT placement and their associated depth across the test site. 
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6.3 Settlement instrumentation and layout 

Due to the nature of the study it was imperative to obtain accurate measurements of 

settlements caused by both blast sequences. We used monitoring systems to measure ground 

surface settlements, settlement vs. depth, and ground settlement vs. time. I will discuss the 

instrumentation for each separately. 

6.3.1 Ground surface settlement 

We monitored ground surface settlements across both the IP and the NP by means of sixty-

two fixed elevation indicators, or stakes (ST), placed in a straight line through the center of both 

panels, which we surveyed manually at the site. We spaced the stakes at 1-m intervals across the 

site; however, within the blast rings (5 m of the center) we placed the stakes at 0.5 m intervals. We 

also used the PVC housing for the profilometer as an additional survey point so that the settlement 

at the very center of the panel was obtained as well. We used a barcode-type survey rod with an 

automatic survey level that provided 0.0305 cm (0.001 ft) accuracy. We surveyed these stakes 

prior to blasting and then approximately one half-hour after each blast sequence so as to record the 

incremental settlement caused by each blast sequence independently. Before each round of 

measurements was taken, two back-sight elevations were taken to ensure that the elevation of the 

tripod did not change. We assumed data points that oscillated around the origin by less than 2 mm 

to be zero to simply the settlement profile and account for minor movements in the survey stakes.
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6.3.2 Settlement vs. depth 

The arrangement of the blast charges was such that the maximum imparted energy would 

be felt in the center of the respective blast ring, and we anticipated that this would be the point of 

maximum settlement in both blast sequences. Within the IP, the point of maximum imparted blast 

energy also corresponds to the theoretical location of maximum improvement due to the RAP 

columns. At this location, in the very center of the RAP grid, we installed a profilometer as shown 

in Figure 6.5 to measure settlement with depth through the profile. The profilometer consists of a 

corrugated PVC drainage pipe prepared with circular steel zip ties that were attached to the outside 

of the tube at 0.5 m intervals. Using rotary drilling, GEO created a cased hole just wide enough to 

insert the corrugated tubing vertically to the hole’s depth. Before insertion, an anchor was attached 

to the end of the tube. After the tube was installed, we inserted a PVC pipe smaller than the 

corrugated tubing vertically inside the length of the tube.  

After installation, saturated sand naturally collapses around the corrugated pipe. During 

blasting and subsequent re-consolidation of the sand the corrugated pile can elongate or shorten 

with the strain of the soil surrounding it. The PVC pipe placed inside the corrugated tubing allowed 

the profilometer to remain vertical and aided in taking measurements with a Sondex measurement 

probe. The Sondex probe detects the elevation of the metal rings as it is lowered into the access 

pipe before and after blasting to define the liquefaction-induced settlement (Lusvardi, 2019). We 

labeled the profilometers as CNP for the NP and CIP for the IP. Each profilometer was outfitted 

with 30 rings and was embedded to approximately 15 m depth.   
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 Figure 6.5: (Left) Cross-sectional view of the sondex profilometer, (Right) PVC 
access tube and magnet used to measure the depth of the metal rings (modified 
after Lusvardi, 2019). 

 

6.3.3 Settlement vs. time 

We also monitored ground surface settlements in real-time during and immediately 

following the blast sequence. We made these observations to provide some correlation between 

the rate of dissipating porewater pressures and the rate of settlement. To accomplish this real-time 

monitoring, we placed six blue PVC pipes perpendicular to the ground within the blast zone as 

shown in Figure 6.6 below.  
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 Figure 6.6: Oblique view of the six blue PVC surface settlement rods, and the 
sixty-two surface settlements stakes, across the test field. 

 

We embedded each survey rod approximately 0.8 m into the moderately compacted soil. 

We embedded the posts only within the surface clay layer inside the blast ring. To compact 

immediately surrounding the pipes we used hand tools in an attempt to minimize the disturbance 

of the natural condition of the soil, however settlement due to liquefaction within the clay layer 

was expected to be minimal, regardless of disturbance.  We taped bar code segments to each pipe 

that could be read using automatic survey level. We positioned the autolevel tripod far enough 

from the blast rings to be unaffected by pore pressure induced settlement, and at what we 

determined to be a safe distance during and after the blasts. The accuracy that could be reasonably 

read from the survey level scope was to 0.0305 cm (0.001 ft). Before and after we recorded each 

round of measurements, back-sight elevations were recorded to adjust, if necessary, for any 

movement of the ground surface upon which the level tripod was placed. We labeled the six blue 

PVC surface settlement rods as shown in Table 6.2 below. We recorded the layout of the settlement 
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instruments, as herein described, using a high resolution GPS unit and can be seen in Figure 6.7 

with respect to the blast rings of the NP and the IP. 

 Table 6.2: Locations of the six blue PVC surface settlement rods, and their 
respective distances from the Unimproved and Improved panels. 

 

 

Finally, INGV also measured surface movements induced by the blast charge explosions 

and resulting liquefaction effects by means of Telestial Laser Scanning (TLS) and Structure from 

Motion (SfM) surveys performed before and after each blast test. In this way, multi-temporal point 

clouds before and after the blasts were obtained, leading to multi-temporal Digital Terrain Models 

(DTMs) whose comparison provided a well-defined pattern of ground subsidence.  While the 

survey stakes provide a more accurate measurement of ground settlement along a line through the 

site, the TLS provided ground surface settlement contours over the entire surface of the test site. 

The TLS data were acquired by means of a Teledyne Polaris instrument (Teledyne 2019) mounted 

on a pole at about 6 m above the ground, using the Level Lift Roof device provided by Scan&Go 

srl (www.scan-go.eu).  
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Figure 6.7: Locations of the surface settlement stakes and surface settlement rods across both the NP and the IP.
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Figure 6.8: Locations of blast holes, RAP columns, pore pressure transducers, accelerometers, settlement instruments. 
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 Figure 6.9: Simplified soil profile section B-B' showing the relative positions of the Improved Panel (IP) and the 
Natural Panel (NP), RAP column positioning, blast holes and other instrumentation at the site. 
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For each stage of the experiment, three scans were performed from three different points 

of view, along a side of the test site about 30 m long. Each scan was taken in about 5 minutes, 

leading to a dense point cloud with a 5 mm sampling step at the acquisition distance (100 m). The 

point clouds were aligned by means of the surface matching algorithm implemented in PolyWorks 

software package (Innovmetric 2019), leading to three multi-temporal point clouds subsequently 

registered into the WGS84 UTM32 reference frame thanks to 11 Ground Control Points (GCPs) 

whose positions were obtained by means of rapid static GNSS measurements. Point clouds were 

taken before and after each blast and differenced to obtain settlement after each blast and the total 

settlement.  

At the same time, aerial SfM surveys were independently carried out by means of two 

Unmanned Aerial systems (UAS) equipped with DJI FC6310 and DJI FC350 camera respectively 

and flying, in both the cases, at about 20-30 m above the ground. For each flight, 50-60 images 

were taken and processed by means of the PhotoScan software package (Agisoft 2019), leading to 

the corresponding point clouds.  

6.4 Additional instrumentation 

In addition to finding a suitable settlement model for the RAP-treated soil, our research 

team had also planned to estimate blast-induced shear strains and shear stresses during the 

experiment. These data would allow our research team to use constitutive relationships to compute 

the actual in-situ cyclic stress ratio induced by the blast test. In theory, this would enable us to 

reconstruct the liquefaction assessment using actual stresses and strains and compare against the 

accuracy of the predictive models. This has never been done before in any previous full-scale blast 
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testing. If successful, this procedure could lead to advancements in the field of in-situ liquefaction 

assessment.  

To obtain estimations of stresses and strains we relied on their relationships to acceleration, 

which could be more easily observed in the field. Accelerations were measured by INGV using 

four in-hole 200g triaxial microelectromechanical (MEMS) accelerometers, or geophones, (ACC1, 

ACC2, ACC3, ACC4) that were located at approximately the midpoint with respect to the two 

panels (i.e. about 10 m from CNP and CIP), using a 1 m-squared configuration between 3.5 and 

4.5 m deep. 

The complete pore pressure and surface settlement instrumentation layout is shown across 

the test site in Figure 6.8. A simplified soil profile drawing showing the section B-B’ from Figure 

6.8 of the test site after RAP and instrumentation installation is provided in Figure 6.9. 
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7 RESULTS FROM BLAST 1 AROUND NATURAL PANEL (NP) AND BLAST 2 

AROUND IMPROVED PANEL (IP) 

The pore pressure response and resulting settlement in the NP and the IP from the two 

identical blast events are reviewed, compared and contrasted in the subsequent sections. 

7.1 Excess pore pressure measurements 

Blast 1 occurred at 12:22:35 on June 4, 2018. During the experiment, as blast detonations 

occurred transient spikes in the excess pore pressure ratio were present. The transient spikes 

represent the rapidly arriving compression waves exerted by the blast. Because the transient spikes 

are relatively unimportant relative to the residual excess pore pressures, we smoothed the raw pore 

pressure measurements to remove the majority of transient pulses and to better represent the 

residual pore pressure by using a 100 point moving average.  

The vertical effective stresses we determined from the SDMT as discussed above and 

shown in Table 6.1. An ru of 1.0 would imply that the pore pressure from the water would equal 

that of the confining pressure at the depth. With both forces in equilibrium at the particle level 

liquefaction occurs in sandy soils (Seed and Lee 1966). An excess pore pressure ratio of 0.90 or 

higher suggests that the soil is essentially liquefied considering uncertainty in soil unit weight and 

other factors. The excess pore pressure ratio during blast 1 is plotted with time in Figure 7.1. The 

inset in Figure 7.1 is a zoomed-in scale showing the ru values during the blast sequence for clarity. 
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The time is relative to the beginning of each blast sequence occurring at 0 seconds. Figure 7.1 

shows that all of the pore pressures dissipate to initial static conditions within approximately 5 

minutes after blast 1. The parallel rates of dissipation suggest that the soil profile largely exhibits 

behavior of a uniform soil type with depth. Fine-grained soil dissipates pore pressures slower than 

granular soil. Although the maximum excess pore pressures may vary over the depths, the 

dissipation of pore pressure occurred from the bottom up. This observation is anticipated since 

deeper depths have higher confining pressures, the magnitude of which are more difficult for the 

porewater pressure to sustain over time. 

The ru values recorded in the IP during blast 1 are shown in Figure 7.2. Excess pore 

pressure ratios within the improved area were negligible (less than 15%) during blast 1.  The one 

exception is the sensor at 4 m which had a peak ru of 30%.  This could be due to the placement of 

the sensor at a depth that is coplanar with the blast charge. It is also likely due to the higher Ic value 

in this zone where the densification from the RAP column treatment was less effective. 

For liquefaction design purposes, the maximum excess pore pressure ratio is the value of 

interest. When this value is greater than the predetermined liquefaction potential ratio then that 

soil layer has been liquefied. We plotted the maximum residual excess pore pressures recorded in 

both the NP and the IP vs. depth for blast 1 in Figure 7.3. In both the NP and the IP the 4 and 6 

meter transducers heavily influenced the average peak ru calculation because the blast charges 

were coplanar at this depth and caused higher ru values. In the NP, the average peak ru, excluding 

the 4 and 6 meter transducers, was 95%. In the IP the 4-meter transducer appears to have been 

most affected by the blast energy. The average ru excluding the 4-meter depth was 15%. 
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 Figure 7.1: Residual excess pore pressure ratio in the NP during blast 1 in the NP at 4, 5, 6, 7, 8, and 9 m depths. 
Average peak residual pore pressure ratio with depth immediately during blast (shown inset). 
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 Figure 7.2: Residual excess pore pressure ratio in the IP during blast 1 in the NP at 4, 5, 6, 7, 8, and 9 m depths.  
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 Figure 7.3: Comparison of peak excess pore pressure ratio, ru, measured during 

blast 1 in the natural panel (NP) and in the improved panel (IP). 
 

Blast 2 occurred at 15:24:56 on June 4, 2018, approximately 3 hours after blast 1 was 

triggered. We also smoothed the pore pressure data for Blast 2 to reduce transient spikes by using 

a 100 point moving average. Figure 7.4 below shows the excess pore pressure ratios vs time for 

the IP during blast 2. The time is relative to the beginning of blast 2 occurring at 0 minutes. The 

peak ru values in the IP during recorded during blast 2 are generally lower than 1.0 indicating that 

the RAP columns were effective in reducing the generation of excess pore pressures. At depths of 

5, 7, and 9 meters, the peak residual ru was kept below the 80% limit for incipient liquefaction 

suggested by Studer and Kok (1980). The large ru values observed at depths of 4 and 6 m are likely 

due to the placement of the blast charges at nearly corresponding depths. The ru values dissipated 

mostly from the bottom upwards.  

Figure 7.5 shows the excess pore pressure ratio in the NP during blast 2 in the IP. The ru 

values generated in the NP during blast 2 were significantly higher than in the IP for blast 1, though 
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below the level for incipient liquefaction. Thus, it appears that the RAP treatment had some 

substantial effect in increasing the liquefaction resistance. The highest ru values were recorded at 

4 and 5 meter depths, near the depths where the charges were detonated. 

We plotted the peak residual ru for the IP and the NP during blast 2 in the IP versus depth 

in Figure 7.6. In the IP, the average peak ru excluding the 4 and 6 meter transducers was 78%, 

which is below the level of incipient liquefaction. In the NP the average ru value generated during 

blast 2, excluding the 4-meter transducer, was 25%. The accelerometer placed at the center of the 

test site, midway between the two panels, recorded ru values of 100% during both blasts. Thus, it 

is apparent that the improvement was unable to dissipate the blast energy and excess pore 

generation felt outside of the treated area. 

 
 Figure 7.4: Comparison of peak excess pore pressure ratio, ru, measured during 

blast 2 in the improved panel (IP) in the natural panel (NP). 
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 Figure 7.5: Residual excess pore pressure ratio in the IP during blast 2 in the IP at 4, 5, 6, 7, 8, and 9 m depths. 
Average peak residual pore pressure ratio with depth immediately during blast (shown inset). 
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Figure 7.6: Residual excess pore pressure ratio in the NP during blast 2 in the IP at 4, 5, 6, 7, 8, and 9 m depths. 
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We plotted the peak residual ru for the IP versus depth relative to the NP in Figure 7.7. In 

the NP during blast 1 the peak measured ru values are close to 1.0 from 3 to 9 m indicating 

liquefaction. In contrast, the peak ru values in the IP during blast 2 are generally lower than 1.0 

indicating that the RAP columns were effective in reducing the generation of excess pore 

pressures.  Significant ru reductions from NP are seen at depths of 5, 7, and 9 m. At these depths 

the peak residual ru was kept below the 80% limit for incipient liquefaction suggested by Studer 

and Kok (1980). The large ru values observed at depths of 4 and 6 m are likely due to the placement 

of the blast charges at nearly corresponding depths.  In the NP, the average peak ru excluding the 

4 and 6 meter transducers was 95%, compared to 78% in the IP. During the blast sequence on the 

opposite side of the field both the NP and the IP did experience some level of ru generation. Figure 

7.7 shows that the ru values were higher in the NP than in the IP, though they were below the level 

for incipient liquefaction. 

 

 Figure 7.7: Comparison of peak excess pore pressure ratio, ru, measured during 
blast 1 in the natural panel (NP) and blast 2 in the improved panel (IP). 
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At both panels, excess pore pressures rapidly developed after a few seconds and remained 

at their peak for 15 to 20 seconds before dissipating as shown in Figure 7.8. The ru values dissipated 

from the bottom upwards and decreased to essentially static levels within about 6 minutes after 

blast detonation. In the improved panel, the blasting sequence generated somewhat lower peak ru 

values and the dissipation rate was somewhat more rapid in comparison with the natural panel. 

 

 Figure 7.8: Dissipating ru values with depth between 10 and 240 seconds after 
triggering blast 1 and blast 2, respectively. 

 

7.2 Sand ejecta 

Following blasting, several large sand boils developed within the blast ring in the natural 

panel as shown in the photo in Figure 7.9. These characteristic liquefaction features graphically 

confirm the results of the pore pressure measurements. Mineralogical evaluation of the ejecta from 
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the sand boil with sand from SPT testing indicates that the ejecta likely came from liquefaction in 

the depth interval between 3 and 9 m. (Fontana et al. 2019). 

In contrast to the natural panel, no sand boils formed within the area treated with RAP 

columns, although smaller sand boils developed outside the treated zone. Considering that the 

development of ejecta was a major cause of building damage during liquefaction in the 

Christchurch earthquake sequence (van Ballegooy et al. 2014), this appears to be an important 

benefit of RAP treatment. Examples of the observed sand boils are shown in Figure 7.9. The 

location of the sand boils after blast 1 and blast 2 are shown in the aerial survey of Figure 7.10. 

Many of the sand boils occurred at the blast holes which served as a conduit to the ground surface. 

These characteristic liquefaction features graphically confirm the results of the pore pressure 

measurements.  

An important contribution of this test is that it serves as another successful case history of 

using blasting methods to recreate liquefaction effects in a full-scale study.  

 

 Figure 7.9: Comparison of observable liquefaction effects in the NP (left) after 
blast 1, and the IP (right) after blast 2 (http://www.releo.it/blast-test-impact-
pier.php).   

 

http://www.releo.it/blast-test-impact-pier.php
http://www.releo.it/blast-test-impact-pier.php
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 Figure 7.10: (a) Aerial photograph of the test site after both blasts, (b) location of 
sand boils with respect to the IP, (c) location of sand boils with respect to the NP 
(after Amoroso et al., 2019). 

 

7.3 Pore pressure induced settlements 

This section will report the ground surface settlements measured in real time during and 

after the blast, the fully developed ground surface settlements, and the settlements observed with 

depth.  
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7.3.1 Real time measurements 

The real-time measurements from blast 1 cover a period of about 86 minutes after the blast. 

Figure 7.11 (a) shows a plot of the total recorded settlements with time for blast 1. We took the 

initial reading before blast 1 and the final reading when incremental settlement readings were 

below 1%. The slope of the settlement line seems to indicate that given more time the profile may 

have continued to settle, perhaps several more millimeters. However, our reading taken prior to 

blast 2, 3 hours after blast 1, determined that less than 0.05 cm additional settlement had taken 

place. Since the incremental settlement was at the limits of our instrumentational accuracy, we 

determined that the maximum settlement in the NP had occurred by 86 minutes after blast 1. From 

these measurements it can be seen that between 65%-80% of the total settlement occurred within 

the first two minutes, and within 13 minutes approximately 95% of the total settlement occurred.  

In a liquefaction event excess porewater pressures (ru) build and momentarily suspend the 

soil particles by reducing the effective stress. As the ru dissipates, reconsolidation of the soil 

particles occurs and causes settlement. In order to see the rate of settlement against the rate of ru 

dissipation, we normalized the same ground settlement from the PVC rods against the maximum 

recorded settlement and plotted against the average ru values as recorded by the six PPT in the 

profile which were discussed previously. After normalization the plots from P1, P2 and P3 plot on 

top of each other. As seen in Figure 7.11 (c) the average excess pore pressure ratio between 4 m 

and 9 m depth had dissipated to 60% within 1 minute of the final charge of the blast sequence. By 

 

 

 



www.manaraa.com

107 
 

two minutes after the final blast charge the average ru was 20%, and 15 minutes after the final blast 

charge average ru values were nearly returned to zero. As anticipated, the normalized settlement 

lines nearly parallel the average ru line, demonstrating that the recorded settlements were caused 

by dissipating ru values. 

The second blast measurements cover a shorter period of 30 minutes since the incremental 

settlements became negligible quicker than they did in blast 1. Figure 7.11 (b) shows a plot of the 

recorded settlements at the three posts (P4, P5, P6) in the IP. We took the initial reading just before 

blast 2 and the final reading approximately 30 minutes after the conclusion of the blast sequence. 

Further recording of the settlements was also complicated by the arrival of a large rainstorm and 

the necessity to immediately remove equipment from the field to protect it from rain and wind 

damage. 

As with the NP, we recorded the normalized settlement with time after blasting for the IP 

and is given in Figure 7.11 (d). After normalization the plots from P4, P5 and P6 mirror each other, 

though not as tightly as do P1, P2, and P3 after Blast 1. In addition to reducing the total settlement, 

the RAP improvement also reduced the time over which the settlement occurred. Within only 8 

minutes approximately 95% of the settlement in the IP was completed, which is approximately 

60% of the time required for 95% settlement in the NP. The increased rate of settlement is likely 

a combination of lower peak excess pore pressures, a lower modulus of compressibility and 

horizontal drainage to the RAP columns in the improved panel. 
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 Figure 7.11: (a) Measured ground settlement with time for the NP during blast 1 
and (b) for the IP during blast 2. Normalized ground settlement and average ru 
for the (c) NP in blast 1 and (d) the IP in blast 2. 

 

7.3.2 Fully developed ground surface measurements 

We recorded ground surface settlements at the sixty-two survey stakes (ST). The 

recordings were made between 30 minutes and 60 minutes after the first blast test was concluded 

when excess pore pressure had fully dissipated. Reconsolidation following blast-induced 

liquefaction produced a nearly symmetrical dish-shaped settlement pattern across the NP as shown 

in Figure 7.12. Maximum settlement at the center of the blast ring was about 95 mm and settlement 

decreased to zero at a distance of about 12 m from the center of the array. Settlements within the 
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blast ring were between 70 and 95 mm after blast 1. As anticipated, the location of maximum 

settlement in the NP corresponds with the highest imparted blast energy, as well as the placement 

of the profilometer where we recorded settlement with depth. 

Elevation change was also measured by INGV using terrestrial laser scanning (TLS) and 

color contours of settlement after blast 1 (B1-B0) are provided in Figure 7.13.  The settlement 

contours indicate a circular dish-shaped settlement pattern in the natural panel similar to the 

autolevel, but the TLS settlements are somewhat lower. This is because sand ejecta accumulating 

at the ground surface decreases the settlement recorded by the TLS relative to that from the survey 

stakes. The TLS survey also confirms the autolevel readings that no settlement occurred in the IP 

as a result of blast 1. Additional details about the TLS based settlement are provided in Amoroso 

et al. (2019).  

We re-surveyed the surface stakes between approximately 30 minutes to 60 minutes after 

the blast sequence around the IP. The settlement caused by the second blast alone is shown in 

Figure 7.14. The second blast series caused some additional settlement on the side of the NP and 

within the zone between the NP and the IP, which could have been due to strain softening during 

the first blast sequence. Within the IP the ground surface settlement from the second blast sequence 

did not exhibit a symmetric settlement profile, as did the blast sequence in NP. Unlike the NP, the 

peak settlement value did not occur at the center of the blast ring, or the center of the improvement 

zone. The maximum amount of settlement occurred at approximately 4 m to the north of the CIP. 

At the location of maximum settlement approximately 5.2 cm of settlement was recorded, 

compared to only 4.0 cm at the location of the CIP. 
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Figure 7.12: Ground surface settlement measurements obtained 30 minutes after blast 1 in the NP. 
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 Figure 7.13: Color contour map from TLS surveys of settlement due to blast 1 in 
the NP (Modified after Amoroso et al., 2019). 

 

The far north side of the IP returned to zero settlement at a rate similar to the far south side 

of the NP after Blast 1. One likely explanation for these higher settlements is inconsistencies in 

construction quality during RAP installation. The crowd test results provided in Table 5.1 

demonstrate that the RAPs on the northeast side of the IP, that were the first to be constructed, 

settled more during crowd tests than the other RAPs in the grid. This lower RAP quality apparently 

led to lower RAP column stiffness and less densification around these columns during treatment.  

This result points to the need for quality control to ensure consistent ground improvement. It is 

also possible that variability in the soil profile could account for some of the differential settlement. 

The cross-sectional view provided by the Electrical Resistivity Tomography lines of Figure 6.9 

indicate that the sandy silt layer between 12-13 m depth is slightly thicker on the north side of the 

RAP group. Due to constraints no in-situ investigations could be made at these locations since the 

objective of the research was to understand settlements at the center of a RAP group. As such, it 
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is not understood if the differential thickness of the sandy silt layer was a primary factor in the 

observed settlement distribution across the test site. 

The TLS survey after blast 2 and the settlements due to this isolated blast (B2-B1) were 

mapped across the test site as shown in Figure 7.15. The TLS survey highlights the higher 

settlements recorded in the northeast sector of the IP. This survey provides evidence that the earlier 

constructed RAP columns may not have performed as well as others constructed later in the 

process. Both the TLS and the autolevel surveys confirm that the settlement in the IP was between 

20 and 50 mm, which is considerably less than that in the natural panel. For the purposes of this 

thesis, we used the measured settlements by the ST and the CIP to perform an analysis of the 

observed settlement. The TLS readings provided validation for our research team that our 

measurements were accurate. 

The cumulative settlement caused by both blast 1 in the NP and blast 2 in the IP, is plotted 

across the test site in Figure 7.17. The greatest settlement was produced within the NP, with about 

50% less settlement occurring in the IP Another TLS survey was performed after blast 2 and the 

settlements were topographical elevation difference between after blast 2 and before all blast 

activities (B2-B0) was calculated. Both the TLS survey from Figure 7.16 and autolevel surveys 

confirm that the settlement in the IP was between 20 and 50 mm, which is considerably less than 

that in the natural panel.  
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Figure 7.14: Ground surface settlement measurements obtained 30 minutes after blast 2 in the IP. 
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 Figure 7.15: Color contour map from TLS surveys of settlement due to blast 2 in the 
IP (Modified after Amoroso et al., 2019). 

 

 Figure 7.16: Color contour map of cumulative settlement from after the two 
blast tests from TLS surveys (After Amoroso et al., 2019). 
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 Figure 7.17: A comparison of ground settlement measurements obtained 30 minutes after blast 1 in the NP, and blast 
2 in the IP across the test field. The combined settlement from blast 1 and 2 is also plotted. 
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7.3.3 Subsurface settlement 

The settlement with depth recorded by our profilometer is shown in Figure 7.18. The 

maximum settlement of 10 cm is consistent with that measured with the survey stakes by the 

autolevel.  The Sondex settlement also provided data consistent with expectations based on soil 

stratigraphy. The clay and organic soil within the top three meters did not compress, but settled 

along with the underlying sand. Liquefaction-induced settlement occurred within the layers of 

sandy silt and silty sand between 3 m and 11 m depth. Below 11 m, the Sondex measurements 

consistently showed that no settlement occurred indicating that pore pressure induced settlement 

was insignificant below 11 m. Average volumetric strain within the liquefied zone was 

approximately 1.6% from 3 to 8 m and approximately 0.7% from 8 to 11 m.  These liquefaction-

induced strains are consistent with what would be expected for a layer with the reported qc values 

if liquefied by an earthquake (Tokimatsu and Seed, 1988, Tokimatsu and Yoshimine, 1983).  

Several inconsistencies exist in the settlement with depth profile as seen in Figure 7.18, such as 

the points where settlement appears to be less at shallow depth than at a deeper depth. These 

inconsistencies may be due to measurement error or local slippage of the corrugated pipe.  

The Sondex measurements for the CIP and the CNP are plotted together in Figure 7.18. It 

appears that more irregularities due to extension or compression occurred in the IP than in the NP. 

Once again, the maximum settlement of 4 cm from the Sondex is consistent with the measurements 

from the survey stakes. The settlement profile shows a significant reduction in settlement in the 

zone of RAP treatment (3 m – 9.5 m) and a reduction of maximum surface settlement of 

approximately 6 cm.  However, the measurements indicate that less than 2 cm of settlement 

occurred within the region of improvement in comparison to 8 cm in the natural panel.  In contrast 

to the profilometer in the NP, the settlement in the IP did not decrease to zero at a depth of 11 m 
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although pore pressure induced settlement was likely insignificant below this depth as indicated 

by the natural panel settlement profile.  Therefore, some additional mechanism may be responsible 

for the observed settlement of about one cm below this depth.  

When we took the measurements after blast 2, the last metal ring that could be found was 

the one placed at 14.5 m depth. The settlement measurements with depth seem to indicate that a 

shift of ~1 occurred to the PVC access pipe for the Sondex tool.  

 
 Figure 7.18: Comparison of observed settlement with depth in the NP and the IP 

as measured by the “Sondex” profilometer after blasts 1 and 2, respectively. 
 

7.3.4 Comparison of measured settlements 

We recorded settlement recorded at the surface of the CNP as 10.05 cm. The settlement at 

the CNP as reported by the ST was approximately 9.4 cm. Given the extensible nature of the 
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corrugated pipe used for the profilometer, the measurement error between the ST and the CNP is 

small (~6.5%).  

The elevation change recorded between the TLS survey and the autolevel survey stakes 

show an approximate 30% difference in measured settlement, with the surface stakes reporting a 

more conservative measurement. Discrepancies in the TLS and survey stakes are likely due to the 

reference point of each measurement system. The survey stakes were embedded several inches 

into the ground prior to blast activities. Therefore, the stakes are recording settlement with respect 

to several inches beneath the initial ground surface. The TLS uses the initial ground surface as the 

reference point. In this context, the surface stakes may be considered a better indicator of 

subsurface activity since the data from the TLS is sensitive to surface elevation changes that may 

have occurred due to ejection of material from sand boils, etc., as shown in Figure 7.19. This seems 

to be the case when comparing the settlements in Figure 7.12 and Figure 7.18 at the location of the 

profilometer in the center of NP. The TLS reports a lesser value for settlement at the center of the 

panel than do the surface stakes. The ejected material from the sand boils would be reflected in the 

stakes as settlement, yet the TLS would record the build-up of the sand boils at the surface, 

depicting less settlement. 

The three methods provided good validation for the actual observed settlement that we 

could use in the creation of a simplified settlement model. In order to perform settlement modeling 

analyses, we considered the effects of the two blast sequences separately and individually. We 

used the settlement that occurred during blast 1 to represent the total settlement in the NP, and the 

incremental settlement that occurred during blast 2 represents the total settlement in the IP. This 

nomenclature will be used through the remainder of this thesis as an analysis of settlement is later 

discussed.  
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 Figure 7.19: Multiple sand boils and ejecta, evidence of liquefaction, observed 
during blast 1 near the center of the unimproved natural panel (NP). 

 

The TLS and surface stake surveys confirm that the settlement in the IP was about 40% of 

the settlement in the NP. Figure 7.20 superimposes the pore pressure induced settlement uniquely 

caused by blast 1 and blast 2, respectively. This figure highlights the asymmetric settlement profile 

in the IP and its contrast with the settlement profile in the control NP.  

The asymmetric settlement profile was likely due to variations in the thickness of the 

liquefiable layer on the North side. The second potential factor for the higher settlement is 

inconsistencies in construction during RAP installation. The crowd test results provided in Table 

5.1 demonstrate that the RAPs on the north side of the IP settled more during crowd tests and were 

not constructed to the same depth as the other RAPs in the grid. This may have accounted for the 

additional ~5 mm of settlement on the north side of the IP. The observed settlements from the TLS 

survey in Figure 7.16 are better understood when the crowd test results from Table 5.1 are taken 

into consideration.  
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Figure 7.20: A superimposed comparison of the settlements between blast 1 in the NP and blast 2 in the IP. 
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7.4 Accelerometer results 

INGV placed four triaxial accelerometers in between the NP and the IP. Each accelerometer 

was programmed to record motion in the time domain in the X, Y, and Z directions. Figure 7.21 

shows the relative placement of the accelerometers to the X-Y coordinate plane along with the 

detonation shot sequence in each panel. ACC1 and ACC3 were placed at 4.5 m depth, while ACC2 

and ACC4 were placed at 3.5 m depth. The detonations are characterized by a very impulsive 

signal of short duration (about 0.02 s) and high amplitude followed by a coda having a lower 

amplitude and a frequency content below 25 Hz. For each detonation the entire recorded signal 

does not exceed 0.4 s (Amoroso et al., 2019). The signal pulses from the deeper (6.5 m), and 

heavier (2 kg) charges produced very energetic signals that are clearly recognizable in both the 

time and the frequency domains. By contrast, the signals at 3.5 m depth (0.5 kg) have lower 

amplitude and are difficult to detect in the recorded time-series (Amoroso et al., 2019).  

An example of the accelerometer time-history recorded by INGV in the X, Y, and Z 

directions is provided in Figure 7.22. This record is consistent with the accelerogram records from 

the three other accelerometers. The accelerogram records show that 12 of the 16 detonation pulses 

are easily identifiable by the transient spikes. The maximum peak acceleration recorded by the in-

hole sensors was about 45g and 52g during blast #1 (NP) and blast #2 (IP), respectively (Amoroso 

et al., 2019). In either case, the largest acceleration was recorded by ACC2 in the Y-direction.  
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 Figure 7.21: Relative placement of the four triaxial accelerometers with respect 
to the NP and the IP. The detonation shot sequence is also shown (after Amoroso 
et al., 2019). 

 

 

 Figure 7.22: An example accelerogram from ACC2 during blast #1 (see Error! 
Reference source not found.) recorded in the time domain in the X, Y, and Z 
directions (after Amoroso et al., 2019). 
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 We received the raw acceleration time history records from INGV for our own 

computations. A typical set of acceleration time history records in the x, y and z direction for one 

blast detonation is shown in Figure 7.23. All accelerometers remained in good working condition 

throughout the duration of each blast sequence. The accelerometers were able to record data to one 

thousandth of a m/s2, however, approximately 1 m/s2 of noise existed within the recorded data. 

The extraneous frequencies were filtered out using a Fourier transform algorithm within a MatLab 

program written by Jared Baxter, a colleague of mine from the Electrical Engineering department 

at BYU. 

 

 Figure 7.23: Time history of accelerations in the x, y and z directions from ACC2 
during the first 2.0 kg detonation of blast #1. 
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8 ANALYSIS OF RESULTS 

8.1 Settlement analysis 

8.1.1 Initial observations and predicted settlements based on CPT resistance 

In order to perform settlement modeling analyses, we considered the effects of the two 

blast sequences separately and individually. The settlement that occurred during blast 1 was used 

to represent the total settlement in the NP, and the incremental settlement that occurred during 

blast 2 represents the total settlement in the IP.  

The observed settlement profile in the natural panel indicates that liquefaction-induced 

settlement occurred between 3 m and 11 m depth, as evidenced by Figure 7.18. Little to no 

settlement occurred within the 3-m thick cohesive surface layer and no settlement occurred below 

11 m in the natural panel.  Within the liquefied layers from 3 to 11 m, the CPT-based settlement 

approach proposed by Zhang et al. (2002) was used to compute liquefaction-induced settlement 

relative to measured settlement in both the natural panel and the improved panel prior to the 

installation of the RAP columns.  We performed these calculations to: (1) confirm that liquefaction 

induced settlement would be similar for both sites prior to improvement and (2) to evaluate the 

ability of the method to match the measured settlement versus depth profile.  

The Zhang et al. (2002) approach requires an estimate of the factor of safety against 

liquefaction.  Although liquefaction was produced by blasting, indicating a factor of safety against 
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liquefaction less than 1.0, the exact blast-induced factor of safety is not known because the method 

does not produce a cyclic stress ratio (CSR). However, an approximation for the factor of safety 

may be gained by comparing computed and observed settlement values. We computed settlement 

vs. depth plots for the CPTu data at the NP area using the established volumetric strain equations 

assuming liquefaction safety factors of 1.0 and 0.9. The volumetric strain equations for FS are 

empirically derived as explained in section 2.6 and are dependent on the clean sand equivalent of 

the corrected cone tip resistance. The volumetric strain equations for FSL=1.0 and FSL=0.9 are 

given in equations 8.1.1, 8.1.2, and 8.1.3, respectively. 

 𝑖𝑖𝑖𝑖 𝐹𝐹𝐹𝐹 = 1.0, 𝜀𝜀𝑣𝑣 = 64(𝑞𝑞𝑐𝑐1𝑁𝑁)𝑐𝑐𝑐𝑐
−.93,𝑓𝑓𝑓𝑓𝑓𝑓 33 ≤ (𝑞𝑞𝑐𝑐1𝑁𝑁)𝑐𝑐𝑐𝑐 ≤ 200 (8.1.1) 

 𝑖𝑖𝑖𝑖 𝐹𝐹𝐹𝐹 = 0.9, 𝜀𝜀𝑣𝑣 = 102(𝑞𝑞𝑐𝑐1𝑁𝑁)𝑐𝑐𝑐𝑐
−.82,𝑓𝑓𝑓𝑓𝑓𝑓 33 ≤ (𝑞𝑞𝑐𝑐1𝑁𝑁)𝑐𝑐𝑐𝑐 ≤ 60 (8.1.2) 

 𝑖𝑖𝑖𝑖 𝐹𝐹𝐹𝐹 = 0.9, 𝜀𝜀𝑣𝑣 = 1430(𝑞𝑞𝑐𝑐1𝑁𝑁)𝑐𝑐𝑐𝑐
−1.48,𝑓𝑓𝑓𝑓𝑓𝑓 60 ≤ (𝑞𝑞𝑐𝑐1𝑁𝑁)𝑐𝑐𝑐𝑐 ≤ 200 (8.1.3) 

Using these equations, we computed volumetric strains and associated ground settlements 

for each layer in the soil profile from 11 m to 3.5 m. The soil profile and normalized cone tip 

resistance (qc1N,cs) profile are shown in Figure 8.2 (a) and (b), respectively. Figure 8.2 (c) shows 

the computed settlement vs. depth profile relative to the measured settlement profile.  As shown 

in Figure 8.2 (c), the computed settlement vs. depth curves for FSL equal to 1.0 and 0.9 bound the 

observed values. This result suggests that the true factor of safety is between these two limits, on 

average.  By interpolating between the volumetric strain equations for FSL of 0.9 and 1.0, we 

obtained excellent agreement between the measured and computed settlement vs. depth curves 

using a FSL of 0.93, as shown in Figure 8.2 (c). Also shown in Figure 8.2 (d) are the computed 

settlement vs. depth curves for the NP and IP pre-improvement using the same FS of 0.93. These 

estimates are within 6% of each other because there are only minor variations (1-2%) in the 
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respective qc1N,cs profiles. The volumetric strain equation used for the interpolated FSL=0.93 was 

as follows: 

  𝜀𝜀𝑣𝑣 = 102(𝑞𝑞𝑐𝑐1𝑁𝑁)𝑐𝑐𝑐𝑐
−.82,𝑓𝑓𝑓𝑓𝑓𝑓 33 ≤ (𝑞𝑞𝑐𝑐1𝑁𝑁)𝑐𝑐𝑐𝑐 ≤ 60 (8.1.4) 

   𝜀𝜀𝑣𝑣 = 1430(𝑞𝑞𝑐𝑐1𝑁𝑁)𝑐𝑐𝑐𝑐
−1.51,𝑓𝑓𝑓𝑓𝑓𝑓 60 ≤ (𝑞𝑞𝑐𝑐1𝑁𝑁)𝑐𝑐𝑐𝑐 ≤ 200 (8.1.5) 

We also computed the liquefaction-induced settlement following RAP installation using 

the Zhang et al. (2002) procedure but with the post-installation (qc1N)cs CPTu profile. Because the 

average peak residual ru following the blast in the IP was approximately 0.8, the factor of safety 

was apparently greater than 1.0.  We estimated the factor of safety against liquefaction in this case 

to be 1.05 based on the relationship between excess pore pressure ratio and factor of safety against 

liquefaction in sand developed by Tokimatsu and Yoshimi (1983) as shown by Figure 8.1. The 

higher factor of safety of the IP in comparison with the NP (FSL = 0.93) can be attributed to both 

increased density and increased lateral earth pressure of the stabilized soil. The liquefaction-

induced volumetric strain for FS = 1.05 was then interpolated from the curves for FS of 1.0 and 

1.1 provided by Zhang et al. (2002). The equations for FSL=1.1 and FSL=1.05 are provided as 

equations 8.1.6 and 8.1.7.  

 𝑖𝑖𝑖𝑖 𝐹𝐹𝐹𝐹 = 1.1, 𝜀𝜀𝑣𝑣 = 11(𝑞𝑞𝑐𝑐1𝑁𝑁)𝑐𝑐𝑐𝑐
−.65,𝑓𝑓𝑓𝑓𝑓𝑓 33 ≤ (𝑞𝑞𝑐𝑐1𝑁𝑁)𝑐𝑐𝑐𝑐 ≤ 200 (8.1.6) 

 𝑖𝑖𝑖𝑖 𝐹𝐹𝐹𝐹 = 1.05, 𝜀𝜀𝑣𝑣 = 37.5(𝑞𝑞𝑐𝑐1𝑁𝑁)𝑐𝑐𝑐𝑐
−.88,𝑓𝑓𝑓𝑓𝑓𝑓 33 ≤ (𝑞𝑞𝑐𝑐1𝑁𝑁)𝑐𝑐𝑐𝑐 ≤ 200 (8.1.7) 
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 Figure 8.1: Typical factors of safety against liquefaction versus residual excess 
pore pressure ratio (After Marcusson and Hynes, 1990). 

 

 

 Figure 8.2: (a) Simplified interpreted soil profile, (b) normalized CPT tip 
resistance with applied clean sand correction (c) Comparison of measured 
settlement vs. depth curve in unimproved panel with computed settlement vs. 
depth curves for FS = 1.0, 0.93 and 0.9 using the Zhang et al. (2002) CPT-based 
approach (d) Measured vs. computed settlement for NP and IP (Pre-RAP). 
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We again used the Zhang et al. (2002) method to compute the volumetric strain for the 

RAP-reinforced zone of the improved panel for a factor of safety of 1.05 (3 to 9.5 m.) and a factor 

of safety of 0.93 applied beneath the RAP-reinforced zone (9.5-11 m) where the settlement vs. 

depth curve from the profilometer shows a slope parallel to that observed within the liquefiable 

layer in the NP (see Figure 7.18). The computed curve significantly underestimates the observed 

settlement from 9.5 to 15 m, but overestimates settlement within the zone treated with the RAP 

columns.  

 

 Figure 8.3: (a) Measured settlement in the NP and the IP compared with 
computed settlement using the Zhang et al. (2002) approach considering RAP 
densification only and (b) Comparison of measured settlement in the IP with the 
settlement model considering composite stiffness. 

 

8.1.2 Settlement profile using a composite stiffness approach 

To consider the stiffening effect that the RAP columns may have had on the treated soil 

from 3 to 9.5 m, we assumed the native soil and RAP columns to act as a composite as suggested 
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by Smith and Wissman (2018). In this approach, the elastic modulus of the RAP (Epier) is multiplied 

by its replacement ratio (Ra) in a unit cell, while the elastic modulus of the natural soil after the 

generation of excess pore pressure (Enatural), is multiplied by (1-Ra) to compute a composite elastic 

modulus (Ecomposite) as given by the equation,  

 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(1 − 𝑅𝑅𝑎𝑎) + 𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑅𝑅𝑎𝑎) (8.1.2.1) 

Elastic theory can then be used to compute the settlement, S, of this layer using the equation, 

 
𝑆𝑆 =

𝛥𝛥𝛥𝛥′𝐻𝐻
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 
(8.1.2.2) 

where Δσ is the change in effective stress (ru*σ’) as the excess pore pressure dissipates to zero and 

H is the thickness of the composite layer with RAP columns.  Incrementally, the equation can be 

written as a summation where Δσ’i, Hi, (ru)i and (Ecomposite)i are values at each depth interval  

 
𝑆𝑆 = �

(𝑟𝑟𝑢𝑢)𝑖𝑖 𝜎𝜎′𝑖𝑖𝐻𝐻𝑖𝑖
(𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)𝑖𝑖

 
(8.1.2.3) 

The elastic modulus for each increment of the native soil after pore pressure generation could then 

be estimated using the equation  

 
(𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)𝑖𝑖 =

(𝑟𝑟𝑢𝑢)𝑖𝑖𝜎𝜎′𝑖𝑖𝐻𝐻𝑖𝑖
𝑆𝑆𝑖𝑖

 
(8.1.2.4) 

where Si is the incremental settlement of the natural soil after RAP installation using the Zhang et 

al. (2002). For this case, Hi was the measurement interval of the CPT or 20 mm, the replacement 

ratio, Ra, for the RAPs was 5%, Epier was 200 MPa (4000 ksf) based on a full-scale field test data 

base (Wissman et al., 2001), and Si’ is the predicted settlement using Zhang et al. (2002) with a 

FS=1.05 as reported previously. 
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Using this procedure, the elastic modulus of each pier greatly stiffens the soil at shallow 

depths and the composite modulus of elasticity increases with depth as the soil experiences greater 

confining stresses. Throughout the depth of improvement, the piers were, on average, responsible 

for 53% of the composite elastic modulus. With an area replacement ratio of only 5%, the piers 

improved the estimated stiffness by a factor of 2.1. This model assumes that the liquefiable layer 

between 9.5 m and 11 m remains unchanged.  

A plot of computed settlement versus depth using this procedure is provided in Figure 8.3 

(b), relative to the measured curve. The effect of composite stiffness is evident in the steeper slope 

of the settlement vs. depth curve within the zone treated with RAPs, which also provides a better 

fit to the shape of the measured settlement curve in this depth range. Approximately 2 cm less 

settlement occurs within the liquefiable layer from 3 m to 9.5 m by considering composite action 

rather than densification only as shown in Figure 8.3 (b). 

8.1.3 Settlement analysis beneath the RAP improved zone 

The settlement vs. depth profile for the IP, observed in Figure 7.18, is difficult to interpret 

beyond a depth of 11 m. The measurements which we obtained between a depth of 9 and 11 m, as 

shown in Figure 7.18, show that the settlement behavior within this zone was consistent between 

the IP and the NP. The consistent composition of the profile within this region, as well as the 

consistent settlement behavior lead us to believe that the amount of settlement between discrete 

readings should also be consistent. In the NP between 10.5 and 11 m depth approximately 0.6 cm 

of settlement occurred. Within this same zone in the IP approximately double the settlement, or 

1.2 cm, occurred. We believe that the discrepancy can be accounted for by local slippage of the 
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corrugated pipe, or measurement error, as explained previously. As such, we estimate that 

settlement at a depth of 11 m in the IP should be more appropriately between 0.8 and 1.0 cm. 

To compute the settlement at the base of the pier, we assume that the composite stiffness 

of the sand-RAP system transfers some load to the base of the RAP group. Mobilized settlements 

that occur external to the reinforced block can generate downward shear forces along the interface 

between the RAP reinforced volume and the surrounding liquefied sand. We estimated the 

downward shear force using empirical correlations for the residual shear strength of liquefied sands 

provided by Olson and Stark (2002), and verified using those proposed by Idriss and Boulanger 

(2007) and was computed as ~13% of the initial vertical effective stress. We applied the residual 

shear strength of the silty sand around the perimeter of the RAP group, and within the zone of RAP 

improvement (3-9.5 m). The estimated undrained shear strength of the soft clay layer (0-3 m) was 

also included in this load estimation from CPTu as proposed by Mayne (2016). We assumed this 

load to be resisted primarily by the 16 RAP columns. 

We then computed the end-bearing settlement that was induced by this load using elastic 

methods, as explained by Vesic (1977), considering the settlement caused by the load carried at 

the toe of a single pier in sand: 

 𝑆𝑆𝑆𝑆 =
𝜋𝜋
4

(1 − 𝑣𝑣2)
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝐵𝐵
𝐸𝐸𝑠𝑠

 (8.1.3.1) 

where qmax is the pressure exerted by the residual shear strength at the base of the RAP, v is 

Poisson’s ratio of the soil, assumed to be 0.2 for sand, Β is the footing width (0.5 m), and Es is the 

average modulus of elasticity of the sandy soil between 11 m and 12 m. 
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Using this equation, we computed the elastic settlement for a single pier to be 0.74 cm. We 

assumed the computed settlements to take place within two diameters of an individual pier or 1 m, 

in this case.  This settlement is comparable to the expected settlement of 1 cm at 11 m. 

8.1.4 Summary of computed settlement model 

We summarize the computed settlements in the improved panel for the various approaches 

incrementally in Figure. 8.4 (a) and as a function of depth relative to the measured curve in Figure. 

8.4 (b).  No settlement occurred within the top layer of clay and organic material as expected. The 

liquefiable zone between 3 m and 11 m depth is divided into two portions, the improved zone (3 

m to 9.5 m) and the non-improved zone (9.5 m to 11 m). Settlement below 11 m is also shown.   

Within the improved zone (3 m to 9.5 m), we compare three distinct settlement models. 

The largest of the three represents the predicted settlement within this layer if the RAP columns 

had not been installed which amounts to approximately 8.2 cm. If only the effects of densification 

from RAP installation are considered, settlement in this interval decreases to 3.9 cm. Including the 

effects of densification and composite behavior together yields a settlement of 1.86 cm which is 

very close to the measured settlement range of about 2 cm in this interval.  Therefore, composite 

action in the RAP treated zone significantly reduced settlement despite the high ru values. 

In the liquefied zone beneath the RAP columns, we predict 1.5 cm of settlement using the 

Zhang et al. (2002) method with FS = 0.93, which is in reasonable agreement with the observed 

settlement in both the natural panel and improved panel.  

At a depth of 11 m, where liquefaction did not cause settlement in the natural panel, we 

observed about 1 cm of settlement in the improved panel. This settlement appears to result from 

the RAPs transferring the cumulative residual shear strength of the soil in the treated zone from 0 
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to 9.5 m down to the base of the RAP group and inducing a computed settlement of 0.74 cm based 

on elastic methods to a depth of 2 pier diameters below the base of the footing at a depth of 12 m. 

Using this approach produces good agreement with the measured settlement of 1 cm in this 

interval. 

 

 Figure. 8.4: (a) Comparison of computed settlement in various depth intervals 
within the IP. (b) Comparison of measured settlement vs. depth in the IP with 
settlement predicted using the interpolated Zhang et al. (2002) approach, 
densification alone, and composite stiffness model. 

 

8.1.5 Settlement profile assuming RAP treatment through liquefiable layer 

One important question resulting from this experiment is the impact of extending the RAP 

columns to deeper depths. In this case study, the blasting technique induced liquefaction to a depth 

of 11 m, yet the improvements were only installed to 9.5 m depth. How would the surface 

settlement and settlement vs. depth profile appear if the RAPs extended through the bottom of the 

liquefiable layer? In this case, densification and composite action would be expected to 
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significantly reduce settlement in the depth interval from 9.5 m to 11 m. Figure. 8.4 (b) also 

presents the predicted settlement vs. depth curve if RAP improvement was continued to 11 m in 

depth. Improving the liquefiable layer between 9.5 and 11 m, and extending the settlement slope 

of the improved zone, an additional 1.7 cm of settlement could potentially be eliminated.  

Therefore, the ground surface settlement would be reduced from 9.7 cm without treatment to 2.4 

cm with RAPs extending through the liquefied zone.  This represents a reduction in settlement of 

75%. 

8.2 Equivalent earthquake 

As described in chapter 4, the blast liquefaction test was designed with the intent to produce 

a zone of liquefaction similar to that would be expect for a Mw 6.14 earthquake and PGA = 0.22g. 

Under these design circumstances we computed the FSL with depth and is shown in Figure 4.6 (b). 

Liquefaction was considered possible between 3 and 8 m depth, and was expected between 6 and 

9 m depth. The PPT data recorded during both blast 1 and blast 2 demonstrate that incipient 

liquefaction likely occurred throughout the entirety of the profile between 4 and 9 m depth. Our 

estimated FSL in the NP was approximately 0.93, according to the excess pore pressure ratio 

relationship proposed by Tokimatsu and Yoshimine (1983). Using CLiq software and this FSL we 

computed the combinations of earthquake magnitude and peak ground acceleration which could 

have produced an equivalent observed FSL during the experiment. This plot of equivalent FSL is 

provided in Figure 8.5. In order to perform parametric comparative analyses, we chose a Mw, PGA 

pair of 7.5, 0.15, respectively.  
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 Figure 8.5: Combinations of earthquake magnitude, Mw, and peak ground 
acceleration, PGA, that would produce equivalent FSL observed during blast-
testing. 

 

8.3 Additional analysis of RAP improvement on liquefaction mitigation 

The predictive settlement equations from Zhang et al. (2002) provide a convenient way to 

quantitatively measure the effects of RAP improvement in the IP. When compared with the excess 

pore pressure ratio relationship proposed by Tokimatsu and Yoshimine (1983), the average 

observed ru values are indicative of a FSL = 1.05. This varies substantially, however, from the 

predictive FSL when using CLiq software. When subjected to a Mw = 7.5 and amax = 0.15 we 

predict the post-improvement FSL to be much higher throughout the zone of improvement, as 

shown in Figure 8.6. It is possible that the average ru of 78%, and correspondingly a FSL=1.05 

underestimate the performance in the IP. The FSL profile in Figure 8.6 shows that weak layers of 

soil were present near the discrete depths of 4, 5, 6, 7, 8 and 9 m where the PPT were placed. Had 

we placed the PPT within different layers it is possible that the average recorded ru, and 

corresponding FSL, could likely be different.  
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 Figure 8.6: Predicted FSL in the pre-RAP and post-RAP improved soil assuming 
a Mw = 7.5 and amax = 0.15. 

 

 Another commonly used indicator of liquefaction potential was shown in Figure 8.7 and 

shows the CRR plotted against corrected cone tip resistance, qc1. Based on numerous historical 

records Idriss and Boulanger (2008) fit a polynomial which separates expected liquefaction from 

non-liquefaction. The polynomial function is expressed as, 

 𝐶𝐶𝐶𝐶𝑅𝑅𝑀𝑀=7.5,𝜎𝜎′𝑣𝑣=1𝑎𝑎𝑎𝑎𝑎𝑎

= exp (
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We plotted the qc1N,cs and CSR pairs against this polynomial in Figure 8.7. According to Idriss and 

Boulanger (2008), it appears that RAP installation improved the profile at all depths, with the 

greatest improvement from RAP occurring in the 6-8 m region for the assumed ground motion, as 

seen in Figure 8.7 (c). 

 

 Figure 8.7: Pairs of qc1N,cs and CSR for depths of (a) 3-4 m, (b) 4-6 m, (c) 6-8 m 
and (d) 8-9.5 m pre- and post-RAP improvement. 

 

 Neither the Idriss and Boulanger (2008), nor the Zhang et al. (2002) procedures consider 

the effects of K0 on liquefaction triggering. Nevertheless, by applying the K0 multiplier from 

equation 3.5.1 we see that the predicted CRR and FSL are improved substantially by the increased 

lateral earth pressures, as shown in Figure 8.8 (a) and (b), respectively. 
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 Figure 8.8: (a) CRR and CSR, and (b) FSL plotted for pre-RAP, post-RAP without 
K0 effects, and post-RAP with K0 effects considered. 

 

 Presently no conclusive data exists that correlates the effects of K0 with decreased 

liquefaction induced settlement. This makes quantifying the effects K0 a more difficult task than 

using the composite stiffness method described in section 8.2.2. However, when considering the 

FSL profile of Figure 8.8 (b), in conjunction with the average measured ru of 78%, the effects of 

increased K0 may explain the reduction in ru, and associated settlements where previous CPT-

based FSL relationships cannot. Between the depths of 3.5 and 5.5 m, Figure 8.8 (b) shows that the 



www.manaraa.com

139 
 

post-RAP improved FSL is less than 1, indicating that liquefaction should occur and ru values 

should be in excess of one. By contrast, the post-RAP FSL considering K0 effects from Figure 8.8 

(b) plots above one, which is more consistent with the average observed ru during blasting in the 

IP. This data points to the effectiveness of increasing lateral earth pressures to mitigate 

liquefaction. Further research will undoubtedly lead to the ability to quantifiably incorporate these 

effects into predictive techniques for liquefaction-induced settlement. 

8.4 Measured accelerations and computed shear strain 

We used the recorded accelerometer data to estimate the shear strains occurring within the 

ground at the center of the two panels as a result of the energy from each detonation. The placement 

of multiple accelerometers at the center of the two panels made it possible to compute the strain 

caused in the direction of each blast wave independently. The constitutive relationship between 

shear, radial, and tangential strain, provided in equation 8.4.1 is the basis of this computation.  

 ϒ = 𝜀𝜀𝑟𝑟 − 𝜀𝜀𝜃𝜃 (8.4.1) 

Where ϒ is shear strain, εr is radial strain, and εθ is tangential strain. The radial and tangential 

strain are determined by the following relationships 

 𝜀𝜀𝑟𝑟 =
𝑢𝑢𝑟𝑟1 − 𝑢𝑢𝑟𝑟2

𝑑𝑑𝑑𝑑
 (8.4.2) 

 𝜀𝜀𝜃𝜃 =
𝑢𝑢𝑟𝑟1 + 𝑢𝑢𝑟𝑟2
𝑅𝑅1 + 𝑅𝑅2

 (8.4.3) 

where ur1 and ur2 are radial displacements obtained by the double integrated accelerations recorded 

by two accelerometers in the direction of the blast charge, dR is the distance between the two 
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accelerometers in the direction of the blast, and R1 and R2 are the distances of each accelerometer 

from the blast source. Figure 8.9 below helps to illustrate these variables.  

 

 Figure 8.9: A simplified diagram showing the necessary variables to compute 
shear strain. 

 

We measured the distance from each blast source to each accelerometer as reliably as 

possible using Google Earth, and established unit vectors in the direction of each detonation. We 

then double integrated the acceleration records in the direction of each blast between each of the 

accelerometers to obtain displacement records for each accelerometer. We then used Equation 

8.4.1 to compute shear strain with the displacement records substituted into 8.4.2 and 8.4.3. To 

eliminate the effects of noise in the accelerometer record, only the displacements within the 0.4 s 

duration of each recorded signal were considered. At the end of each signal duration the 

displacements were re-zeroed. The incremental cyclic shear strain (CSS) was between 0.5% and 

2.5% per cycle.  

The incremental computed shear strains from 13 of the 16 blast charges are plotted relative 

to the average incremental ru values across all depths in Figure 8.10. Each detonation was 
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considered as an independent cycle of loading. Both the shear strain, as well as the ru values 

demonstrate the differences between blast-induced ground motions, and ground motions 

associated with real earthquake sequences. In a real earthquake, the excess pore pressure ratio 

increases more slowly and over more cycles of loading. In contrast, the ru values spike to above 

60% on the first cycle of loading for both the blast detonations around the NP and the IP. The shear 

strains induced by blasting are also much larger per cycle than for a typical earthquake ground 

motion. The CSS from the blast test is on average larger than the typical earthquake CSS by 

between two or three orders of magnitude. 

We plotted the cumulative CSS values with increasing ru in Figure 8.11. Figure 8.11 shows 

that the cumulative shear strains caused by blasting in the NP and in the IP are essentially parallel. 

From Figure 8.11 it appears that the energy transmitted by the two blast sequences was 

approximately equal. It also appears that the RAP columns did not reduce the blast energy that was 

transmitted outside the treated area. 

A secondary approach towards estimating shear strains is summarized by Kinney (2018). 

This method considers the effects of shear modulus degradation with changing excess pore 

pressure ratios. We used the measured ru and accelerogram values to plot shear strains using this 

approach and plotted them in Figure A.2 in Appendix A. We did this in order to confirm that the 

magnitude of the shear strains between the two methods were consistent.  
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 Figure 8.10: Incremental values of cyclic shear strain (CSS) and ru during blast 1 
(NP) and blast 2 (IP). 

 

 

 Figure 8.11: Cumulative CSS and ru plotted against the number of cycles (blast 
detonations) during blast 1 (NP) and blast 2 (IP). 
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 Using the constitutive relationship between shear stress and shear strain it is theoretically 

possible to use accelerogram records, along with values for the bulk and shear modulus of the soil, 

to estimate the induced shear stresses using the following procedure. First, the induced shear stress, 

τ is computed using the equation: 

 𝜏𝜏 =
1
2

(𝜎𝜎𝑟𝑟 − 𝜎𝜎𝜃𝜃) (8.4.4) 

where σr is the radial stress, and σθ is the tangential stress. Assuming the sand is subject to a 

spherically symmetrical three-dimensional loading, the radial and tangential stresses are given by 

the following equations:  

 𝜎𝜎𝑟𝑟 = 𝜌𝜌 ∗ 𝑑𝑑𝑑𝑑 ∗
𝑎𝑎1 + 𝑎𝑎2

2
 (8.4.5) 

 𝜎𝜎𝜃𝜃 = 𝜆𝜆 ∗ 𝜀𝜀𝑟𝑟 + 2(𝜆𝜆 + 𝐺𝐺)
𝑢𝑢𝑟𝑟
𝑟𝑟

 (8.4.6) 

where  

 𝜆𝜆 = 𝐵𝐵 −
2
3

 (8.4.7) 

and where a is the acceleration recorded in the direction of the blast, ur is the average displacement 

recorded by two independent accelerometers, r is the average radius from the blast source to the 

accelerometers, G is the shear modulus of the soil, and B is the bulk modulus water. The shear 
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modulus, G, was obtained from DMT correlations and were estimated as 38.4 MPa (5.6 ksi) and 

14.7 MPa (2.1 ksi), respectively. Substituting equations 8.4.5 and 8.4.6 into 8.4.4, the shear stress 

is computed as: 

 𝜏𝜏 =
3
4

[𝜎𝜎𝑟𝑟 − 𝐵𝐵 �𝜀𝜀𝑟𝑟 +
2𝑢𝑢𝑟𝑟
𝑟𝑟
�] (8.4.8) 

Once the cyclic shear stress is computed it can be normalized by the vertical effective stress 

to obtain the cyclic stress ratio (CSR). We computed the cyclic stresses for each of the blast charges 

using this procedure and they are plotted in Figure 8.13, which shows that the average induced 

shear stress was on the order of 0.1 to 0.55 MPa (0.01 to 0.08 ksi). Since the in-situ vertical 

effective stress at the depth of the accelerometers was between 45 and 60 kPa (.0087 ksi) the 

computed values of shear stress would result in CSR ratios between 1 and 9. The CRR ratios for 

the given soil are approximately 0.2. Given that the CSR is so much larger than the CRR, it is not 

known if the values for shear stress computed using this method are reliable at this time. The 

prospect of back-calculating CSR from blast testing has, to this point, not been effectively 

implemented in any research and would be of great benefit to the industry. This would mean that 

researchers could more reliably compare ground motions from blast charges to earthquake ground 

motions for liquefaction analyses. This research serves as another data point in the library of blast-

induced liquefaction that can help propel this discovery. 
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 Figure 8.12: Induced shear stress from blast 1 (NP) and blast 2 (IP) with the 
average peak excess pore pressure ratio at additional cycle of loading. 

 

 

 

 Figure 8.13: Cyclic stress ratio (CSR) from blast 1 (NP) and blast 2 (IP) with 
average peak excess pore pressure ratio at additional cycle of loading. 
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9 SUMMARY AND CONCLUSIONS 

Full-scale blast-induced liquefaction tests were carried out in Bondeno, Italy to evaluate 

the effectiveness of Rammed Aggregate Pier (RAP) treatment in mitigating liquefaction hazards 

in silty sands. Tests were performed on treated and untreated panels at a test site where silty sands 

liquefied and produced numerous sand boils during the 2012 Mw 6.1 Emilia Romagna earthquake. 

The controlled blasting experiment was successful at inducing liquefaction in the liquefiable layer 

(3 m – 11 m) composed of natural untreated silty sands (FC ≈ 15-45%) and produced surface 

settlements of 70 to 100 mm along with several large sand boils. The consistent nature of the soil 

profile between the NP and the IP provided an excellent window for observing the mitigating 

effects of RAP improvement during liquefaction. RAP treatment increased the relative density and 

at-rest earth pressure coefficient for the silty sand. The improvement limited maximum settlement 

after improvement to less than 5 cm and reduced sand ejecta within the treated zone. 

Based on analysis of the settlement data, the following conclusions can be drawn: 

1. The blast energy imparted to the untreated, natural panel (NP), and the treated, improved panel 

(IP) produced ground motions that were similar to an equivalent earthquake of magnitude Mw=7.5 

and PGA = 0.15 g. 
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2. Liquefaction-induced settlement in the NP was consistent with the computed settlement versus 

depth curve using the Zhang et al. (2002) approach assuming an appropriate factor of safety (0.93 

in this case). 

3. RAP installation densified the silty sand and increased the K0 value, but ru values of 80% still 

developed consistent with a liquefaction safety factor of 1.05 following blasting. However, 

computed liquefaction-induced settlement using the Zhang et al. (2002) significantly 

overestimated measured settlement when considering densification effects alone.   

4. The measured settlement versus depth profile within the RAP treatment zone was reasonably 

well computed assuming that the RAPs and the surrounding sand resist elastic compression as a 

composite following pore pressure dissipation. 

5. Downward shear along the RAP-sand composite transfers load to the base of the RAP columns 

which induces elastic settlement below the base of the RAPs. 

6. Elastic compression from the toe of the RAP group appears to be consistent with settlement 

using elastic methods to account for settlement below the base of the RAPs. 

7. The effects of K0 are evident in the predictive FSL for the design ground motions. While these 

effects are real, no direct relationship exists between K0 and settlement predictions at this time. 

This research experiment also demonstrates the need for further study of key areas such as 

the true effects of lateral earth pressures and quantifying these effects towards liquefaction 

settlement analyses. Also, further study is recommended to more accurately estimate blast-induced 

shear strains and stresses, and associated CSR, using accelerogram records. 
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APPENDIX A. ADDITIONAL RESOURCES 

Table A.1: Relationship between postliquefaction volumetric strain and equivalent  
clean sand normalized CPT tip resistance for different factors of safety 

 (After Zhang et al, 2002). 
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 Figure A.1: Flowchart for evaluation of CRR7.5 using Robertson and Wride 
(1998) CPT-based method (after Zhang et. al, 2002). 
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Figure A.2: Computed shear strain after the manner of Kinney (2018). 
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